Have a personal or library account? Click to login

Monte Carlo study of medium-energy electron penetration in aluminium and silver

By:
Open Access
|Jun 2015

References

  1. 1. Reimer, L. (2000). Scanning electron microscopy: Physics of image formation and microanalysis. Meas. Sci. Technol., 11, 1826. DOI: 10.1088/0957-0233/11/12/703.10.1088/0957-0233/11/12/703
  2. 2. Spencer, L. V. (1955). Theory of electron penetration. Phys. Rev., 98(6), 1597–1615.10.1103/PhysRev.98.1597
  3. 3. Kanaya, K., & Okayama, S. (1972). Penetration and energy-loss theory of electrons in solid targets. J. Phys. D-Appl. Phys., 5, 43–58.10.1088/0022-3727/5/1/308
  4. 4. Shimizu, R., Kataoka, Y., Ikuta, T., Koshikawat, T., & Hashimoto, H. (1976). A Monte Carlo approach to the direct simulation of electron penetration in solids. J. Phys. D-Appl. Phys., 9, 101–114.10.1088/0022-3727/9/1/017
  5. 5. Adesida, I., Shimizu, R., & Everhart, T. E. (1980). A study of electron penetration in solids using a direct Monte Carlo approach. J. Appl. Phys., 51(11), 5962–5969.10.1063/1.327515
  6. 6. Dep, P., & Nundy, U. (1988) A study of the penetration of electrons in compounds by Monte Carlo calculations. J. Phys. D-Appl. Phys., 21, 763–767.
  7. 7. Shimizu, R., & Ze-Jun, D. (1992). Monte Carlo modeling of electron-solid interactions. Rep. Prog. Phys., 55, 487–531.10.1088/0034-4885/55/4/002
  8. 8. Ivin, V. V., Silakov, M. V., Babushkin, G. A., Lu, B., Mangat, P. J., Nordquist, K. J., & Resnick, D. J. (2003). Modeling and simulation issues in Monte Carlo calculation of electron interaction with solid targets. Microelectron. Eng., 69, 594–605.10.1016/S0167-9317(03)00351-4
  9. 9. Ding, Z. J., Salma, K., Li, H. M., Zhang, Z. M., Tokesi, K., Varga, D., Toth, J., Goto, K., & Shimizu, R. (2006). Monte Carlo simulation study of electron interaction with solids and surfaces. Surf. Interface Anal., 38, 657–663.10.1002/sia.2166
  10. 10. Dapor, M. (1992). Monte Carlo simulation of backscattered electrons and energy from thick targets and surface films. Phys. Rev. B, 46(2), 618–625.10.1103/PhysRevB.46.618
  11. 11. Joy, D. C. (1991). An introduction to Monte Carlo simulations. Scanning Microscopy, 5(2), 329–337.
  12. 12. Molière, G. (1947). Theory of scattering of fast charged particles. I. Single scattering in a screened Coulomb field. Z. Naturforsch. A, 2, 133–145.
  13. 13. Nigam, B. P., Sundaresan, M. K., & Wu, T. Y. (1959). Theory of multiple scattering second Born approximation and corrections to Moliere’s work. Phys. Rev., 115, 491–502.10.1103/PhysRev.115.491
  14. 14. Joy, D. C. (1955). Monte Carlo modeling for electron microscopy and microanalysis. New York: Oxford University Press.
  15. 15. Kyriakou, I., Emfietzoglou, D., Nojeh, A., & Moscovitch, M. (2013). Monte Carlo study of electron-beam penetration and backscattering in multi-walled carbon nanotube materials: The effect of different scattering models. J. Appl. Phys., 113, 084303-11.10.1063/1.4792231
  16. 16. Mayol, R., & Salvat, F. (1997). Total and transport cross sections for elastic scattering of electrons by atoms. Atom. Data Nucl. Data Tables, 65, 55–154.10.1006/adnd.1997.0734
  17. 17. Jablonski, A., Salvat, F., & Powell, C. J. (2010). NIST electron elastic-scattering cross-section database – Version 3.2. National Institute of Standards and Technology Standard Reference Data Program. Gaithersburg, MD: National Institute of Standards and Technology.
  18. 18. Liljequist, D. (1983). A simple calculation of inelastic mean free path and stopping power for 50 eV-50 keV electrons in solids. J. Phys. D-Appl. Phys., 16, 1567–1582.10.1088/0022-3727/16/8/023
  19. 19. Gryzinski, M. (1965). Two-particle collisions. I. General relations for collisions in the laboratory system, two-particle collisions. II. Coulomb collisions in the laboratory system of coordinates, classical theory of atomic collisions. I. Theory of inelastic collisions. Phys. Rev., 138, A305, A322, A336.
  20. 20. Ozmutlu, E. N., & Aydin, A. (1994). Monte-Carlo calculations of 50 eV-I MeV positrons in aluminum. Appl. Radiat. Isot., 45, 963–971.10.1016/0969-8043(94)90236-4
  21. 21. Aydın, A. (2000). Monte Carlo calculations of positron implantation profiles in silver and gold. Radiat. Phys. Chem., 59, 277–280.10.1016/S0969-806X(00)00294-2
  22. 22. Aydın, A. (2005). Monte Carlo calculations of low energy positrons in silicon. Nukleonika, 50(1), 37–42.
  23. 23. Aydın, A. (2009). Monte Carlo calculations of electrons in aluminum. Appl. Radiat. Isot., 67, 281–286.10.1016/j.apradiso.2008.04.02218541434
  24. 24. Powell, C. J., & Jablonski, A. (2010). NIST electron inelastic mean free path database. Version 1.2. Gaithersburg, MD: National Institute of Standards and Technology. (SRD 71).
  25. 25. Penn, D. R. (1987). Electron mean free path calculations using a model dielectric function. Phys. Rev. B, 35, 482–486.10.1103/PhysRevB.35.482
  26. 26. Seliger, H. H. (1955). Transmission of positrons and electrons. Phys. Rev., 100(4), 1029–1037.10.1103/PhysRev.100.1029
DOI: https://doi.org/10.1515/nuka-2015-0035 | Journal eISSN: 1508-5791 | Journal ISSN: 0029-5922
Language: English
Page range: 361 - 366
Submitted on: Jul 15, 2014
Accepted on: Jan 26, 2015
Published on: Jun 22, 2015
Published by: Institute of Nuclear Chemistry and Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2015 Asuman Aydın, Ali Peker, published by Institute of Nuclear Chemistry and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.