Have a personal or library account? Click to login
Kalman Filter or VAR Models to Predict Unemployment Rate in Romania? Cover

Kalman Filter or VAR Models to Predict Unemployment Rate in Romania?

Open Access
|Jun 2015

References

  1. 1. Allan, G. (2013). Evaluating the usefulness of forecasts of relative growth.Sire Discussion Paper,2013-10, 1-26.
  2. 2. Barnichon, R., Nekarda, C. J., Hatzius, J., Stehn, S. J., &Petrongolo, B. (2012). The Ins and Outs of Forecasting Unemployment: Using Labor Force Flows to Forecast the Labor Market [with Comments and Discussion]. Brookings Papers on Economic Activity, 83-131. http://dx.doi.org/10.1353/eca.2012.001810.1353/eca.2012.0018
  3. 3. Bratu, M.(2012).The reduction of uncertainty in making decisions by evaluating the macroeconomic forecasts performance in Romania.Economic Research-Scientific Journal, 25(2), 239-262.10.1080/1331677X.2012.11517506
  4. 4. Camba-Mendez, G. (2012). Conditional forecasts on SVAR models using theKalman filter.Economics Letters, 115(3), 376-378. http:// dx.doi.org/10.1016/j.econlet.2011.12.08710.1016/j.econlet.2011.12.087
  5. 5. Clements, M. P., & Hendry, D. F. (2003). On the limitations of comparing mean squared forecast errors (with discussion). Journal of Forecasting, 12, 617-639. http://dx.doi.org/10.1002/for.398012080210.1002/for.3980120802
  6. 6. Franses, P. H., McAleer, M., &Legerstee, R. (2012).Evaluating macroeconomic forecasts: a concise review of some recent developments. Kier Discussion Paper Series, 821, 1-29.
  7. 7. Franses, P. H., Paap, R., &Vroomen, B. (2004).Forecasting unemployment using an autoregression with censored latent effects parameters.International Journal of Forecasting, 20(2), 255-271. http://dx.doi.org/10.1016/j.ijforecast.2003.09.00410.1016/j.ijforecast.2003.09.004
  8. 8. Heilemann, U., &Stekler, H. O. (2013). Has The Accuracy of Macroeconomic Forecasts for Germany Improved?.German Economic Review, 14(2), 235-253. http://dx.doi.org/10.1111/j.1468-0475.2012.00569.x10.1111/j.1468-0475.2012.00569.x
  9. 9. Hodrick, R., & Prescott, E. C. (1997). Postwar U.S. business cycles: An empirical investigation. Journal of Money, Credit and Banking, 1-16. http://dx.doi.org/10.2307/295368210.2307/2953682
  10. 10. Kishor, N. K., & Koenig E. F. (2012).VAR estimation and forecasting when data are subject to revision.Journal of Business & Economic Statistics, 30(2), 181-190.
  11. 11. Koopman, S.J., Shephard, N.&Doornik, J.A. ( 1999). Statistical algorithms for models in state space using SsfPack 2.2.Econometrics Journal, 2(1), 107-160. http://dx.doi.org/10.1111/1368-423X.0002310.1111/1368-423X.00023
  12. 12. Kurita, T. (2010).A forecasting model for Japan’s unemployment rate.Eurasian Journal of Business and Economics, 3(5), 127-134.
  13. 13. Lack, C. (2006).Forecasting Swiss inflation using VAR models.Swiss National Bank Economic Studies, 2.
  14. 14. Milas, C.,&Rothman, F. (2008). Out-of-sample forecasting of unemployment rates with pooled STVECM forecasts.International Journal of Forecasting, 24(1), 101-121. http://dx.doi.org/10.1016/j.ijforecast.2007.12.00310.1016/j.ijforecast.2007.12.003
  15. 15. Proietti, T. (2003). Forecasting the US unemployment rate.Computational Statistics & Data Analysis, 42(3), 451-476. http://dx.doi. org/10.1016/S0167-9473(02)00230-X10.1016/S0167-9473(02)00230-X
  16. 16. Razzak, W. (1997). The Hodrick-Prescott technique: A smoother versus a filter: An application to New Zealand GDP.Economics Letters, 57(2), 163-168. http://dx.doi.org/10.1016/S0165-1765(97)00178-X10.1016/S0165-1765(97)00178-X
  17. 17. Robinson, W. (1998). Forecasting inflation using VAR Analysis.Bank of Jamaica.Retrieved from http://www.boj.org.jm/uploads/pdf/papers_pamphlets/papers_pamphlets_forecasting_inflation_using_var_analysis.pdf
  18. 18. Sermpinis, G., Stasinakis, C., &Karathanasopoulos, A. (2013).Kalmanfilter and SVR combinations in forecasting US unemployment. Artificial Intelligence Applications and InnovationsIFIP Advances in Information and Communication Technology, 412, 506-515.
  19. 19. vanDijk, D., Teräsvirta, T., &Franses, P.H. (2000). Smooth transition autoregressive models-Asurvey of recent developments. Working Paper Series in Economics andFinance, No. 380, Stockholm School of Economics
DOI: https://doi.org/10.1515/ngoe-2015-0009 | Journal eISSN: 2385-8052 | Journal ISSN: 0547-3101
Language: English
Page range: 3 - 21
Submitted on: Feb 1, 2015
|
Accepted on: Apr 1, 2015
|
Published on: Jun 25, 2015
Published by: University of Maribor
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2015 Mihaela Simionescu, published by University of Maribor
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.