Have a personal or library account? Click to login
Measurement of Residual Stresses of Locomotive Wheel Treads During the Manufacturing Technological Cycle Cover

Measurement of Residual Stresses of Locomotive Wheel Treads During the Manufacturing Technological Cycle

Open Access
|Dec 2019

References

  1. [1] Kamyshev, A.V., Nikitina, N.E., Smirnov, V.A. (2010). Measurement of the residual stresses in the treads of railway wheels by the acoustoelasticity method. Russian Journal of Nondestructive Testing, 46 (3), 189-193.10.1134/S106183091003006X
  2. [2] Murav’ev, V. V., Volkova, L. V. (2013). Evaluation of the interference value for the treads of locomotive wheels by the acoustic elasticity method. Russian Journal of Nondestructive Testing, 49 (9), 524-529.10.1134/S1061830913090064
  3. [3] Croccolo, D., De Agostinis, M., Ceschini, L., Morri, A., Marconi A. (2013). Interference fit effect on improving fatigue life of a holed single plate. Fatigue & Fracture of Engineering Materials & Structures, 36 (7), 689-698.10.1111/ffe.12039
  4. [4] Mädler, K., Geburtig, T., Detlev U. (2016). An experimental approach to determining the residual lifetimes of wheelset axles on a full-scale wheel-rail roller test rig. International Journal of Fatigue, 86, 58-63.10.1016/j.ijfatigue.2015.06.016
  5. [5] Motova, E.A., Nikitina, N.E., Tarasenko, Yu. P. (2013). Concerning the Possibility of Examining Compressor Blades according to Attenuation and Speed of Ultrasound. Journal of Machinery Manufacture and Reliability, 42 (4), 335-340.10.3103/S1052618813040109
  6. [6] Kostin V.N., Vasilenko O.N., Filatenkov D.Yu., Chekasina Yu.A., Serbin E.D. (2015). Magnetic and magnetoacoustic testing parameters of the stressed-strained state of carbon steels that were subjected to a cold plastic deformation and annealing. Russian Journal of Nondestructive Testing, 51 (10), 624-632.10.1134/S1061830915100071
  7. [7] Filinov V.V., Kuznetsov A.N., Arakelov P.G. (2017). Monitoring stressed state of pipelines by magnetic parameters of metal. Russian Journal of Nondestructive Testing, 53 (1), 51-61.10.1134/S1061830917010065
  8. [8] Wentao Song, Chunguang Xu, Qinxue Pan, Jianfeng Song (2016). Nondestructive testing and characterization of residual stress field using an ultrasonic method. Chinese Journal of Mechanical Engineering, 29 (2), 365-371.10.3901/CJME.2015.1023.126
  9. [9] Yashar Javadi, Seyed Hatef Mosteshary (2015). Evaluation of Welding Residual Stress in a Nickel Alloy Pressure Vessel using the Ultrasonic Stress Measurement Technique. Materials Evaluation, 73 (6), 862-868.
  10. [10] Allen, D.R., Sayers, C.M. (1984). The measurement of residual stress in textured steel using an ultrasonic velocity combinations technique. Ultrasonics, 22 (4), 179-188.10.1016/0041-624X(84)90034-9
  11. [11] Chunguang Xu, Wentao Song, Qinxue Pan, Huanxin Li, Shuai Liu. (2015). Nondestructive Testing Residual Stress Using Ultrasonic Critical Refracted Longitudinal Wave. Physics Procedia, 70, 594-598.10.1016/j.phpro.2015.08.030
  12. [12] Uglov A.L., Khlybov A.A. (2015). On the inspection of the stressed state of anisotropic steel pipelines using the acoustoelasticity method. Russian Journal of Nondestructive Testing, 51 (4), 210-216.10.1134/S1061830915040087
  13. [13] Smirnov A.N., Knyazkov V.L., Abakov N.V., Ozhiganov E.A., Koneva N.A., Popova N.A. (2018) Acoustic evaluation of the stress-strained state of welded carbon steel joints after different modes of heat input. Russian Journal of Nondestructive Testing, 54 (1), 37-43.10.1134/S1061830918010072
  14. [14] Hirao M., Ogi H. Electromagnetic Acoustic Transducers: Noncontacting Ultrasonic Measurements Using EMATs. Tokyo: Springer Japan, 2017. 380 с.10.1007/978-4-431-56036-4
  15. [15] Murav’ev V.V., Volkova L.V., Platunov A.V., Kulikov V.A. (2016). An electromagnetic-acoustic method for studying stress-strain states of rails. Russian Journal of Nondestructive Testing, 52 (7), 370-376.10.1134/S1061830916070044
  16. [16] Murav’ev V.V., Tapkov K.A. (2017). Evaluation of Strain-Stress State of the Rails in the Production. Devices and Methods of Measurements, 8 (3), 236-245.10.21122/2220-9506-2017-8-3-263-270
  17. [17] Murav’ev V.V., Murav’eva O.V., Petrov K.V. (2017). Connection between the properties of 40kh-steel bar stock and the speed of bulk and Rayleigh waves. Russian Journal of Nondestructive Testing, 53 (8), 560-567.10.1134/S1061830917080046
  18. [18] Murav’ev V.V., Volkova L.V., Platunov A.V., Buldakova I.V., Gushchina L.V. (2018) Investigations of the structural and strain-stress state of the rails of current production by the acoustic elasticity method. Bulletin of Kalashnikov ISTU, 21(2), 13-23.10.22213/2413-1172-2018-2-13-23
  19. [19] Murav’ev V.V., Murav’eva O.V., Petrov K.V. (2018) Contactless electromagnetic acoustic techniques of diagnostics and assessment of mechanical properties of steel rolled bars. Materials physics and mechanics, 38 (1), 48-53.
  20. [20] Dovica, M., Busa, J., Palencar, R., Duris, S., Soos, L., Vrba, I., Kelemenova, T., Skovranek, T. (2013). Comparison of methods for analysis of deviations from roundness. Measurement Techniques, 56 (9), 1021-1025.10.1007/s11018-013-0323-x
  21. [21] Jančárik, V., Harťanský, R., Slížik, J., Mierka, M., Halgoš,J., Hallon,J., Hricko, J. (2019). Autonomous sensor of electromagnetic field. In Review of Scientific Instruments. Vol. 90, Iss. 6 Art. No. 64705.10.1063/1.509018531255044
  22. [22] Hornik, J.; Peslova, F.; Krum, S. (2016) Selection of basic input variables for computational modeling of brake shoes. Procedia Engineering, 136, 300-305.10.1016/j.proeng.2016.01.214
  23. [23] Horník, J., Zuna, P., Málek, J. (2017) Evaluation of changes of mechanical properties of selected Cr-Ni-Mo steels for heavy forgings during long time annealing. Materials Science Forum, 891, 149-154.10.4028/www.scientific.net/MSF.891.149
  24. [24] Slížik, J., Harťanský, R. (2013). Metrology of Electromagnetic Intensity Measurement in Near Field. In Quality Innovation Prosperity. Vol. 17, Iss. 1 (2013), pp. 57-66.10.12776/qip.v17i1.79
  25. [25] Budenkov G.A., Korobeinikova O.V. (2009) Influence of the chemical composition and temperature of metals on the efficiency of electromagnetic-acoustic transformation. Russian Journal of Nondestructive Testing. 45 (4), 252-258.10.1134/S1061830909040056
DOI: https://doi.org/10.1515/mspe-2019-0037 | Journal eISSN: 2450-5781 | Journal ISSN: 2299-0461
Language: English
Page range: 236 - 241
Submitted on: Apr 1, 2019
Accepted on: Aug 1, 2019
Published on: Dec 4, 2019
Published by: STE Group sp. z.o.o.
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2019 Vitaly V. Muravev, Olga V. Muraveva, Ludmila V. Volkova, Milan Sága, Zuzana Ságová, published by STE Group sp. z.o.o.
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.