Have a personal or library account? Click to login

Modification in surface properties of poly-allyl-diglycol-carbonate (CR-39) implanted by Au+ ions at different fluences

Open Access
|Jun 2016

Figures & Tables

Fig. 1

SRIM/TRIM simulation for 400 keV Au+ ion implantation in CR-39 (a) estimated ion trajectories (b) vacancies-depth distribution.
SRIM/TRIM simulation for 400 keV Au+ ion implantation in CR-39 (a) estimated ion trajectories (b) vacancies-depth distribution.

Fig. 2

Raman spectrum for pristine CR-39.
Raman spectrum for pristine CR-39.

Fig. 3

Raman spectra of 400 keV Au+ ion implanted CR-39 at (a) 5 × 1014 ions/cm2 and (b) 5 × 1015 ions/cm2.
Raman spectra of 400 keV Au+ ion implanted CR-39 at (a) 5 × 1014 ions/cm2 and (b) 5 × 1015 ions/cm2.

Fig. 4

FT-IR spectra of (a) pristine and implanted CR-39 with 400 keV Au+ ion beam at (b) 5 × 1013 ions/cm2 (c) 1 × 1014 ions/cm2 (d) 5 × 1014 ions/cm2 (e) 1 × 1015 ions/cm2 (f) 5 × 1015 ions/cm2.
FT-IR spectra of (a) pristine and implanted CR-39 with 400 keV Au+ ion beam at (b) 5 × 1013 ions/cm2 (c) 1 × 1014 ions/cm2 (d) 5 × 1014 ions/cm2 (e) 1 × 1015 ions/cm2 (f) 5 × 1015 ions/cm2.

Fig. 5

Surface topography AFM images (2 μm × 2 μm) of (a) pristine CR-39 and implanted by 400 keV Au+ ions at (b) 5 × 1013 ions/cm2 (c) 5 × 1014 ions/cm2 (d) 5 × 1015 ions/cm2. The images on the left hand side of the figure are three-dimentional AFM micrographs, two-dimentional topographic scans are in the middle, while line profiles of surface, highlighted in the 2D images, are shown on the right hand side of the figure.
Surface topography AFM images (2 μm × 2 μm) of (a) pristine CR-39 and implanted by 400 keV Au+ ions at (b) 5 × 1013 ions/cm2 (c) 5 × 1014 ions/cm2 (d) 5 × 1015 ions/cm2. The images on the left hand side of the figure are three-dimentional AFM micrographs, two-dimentional topographic scans are in the middle, while line profiles of surface, highlighted in the 2D images, are shown on the right hand side of the figure.

Fig. 6

UV-Vis absorption spectra of CR-39 (a) pristine and implanted at 400 keV to (b) 5 × 1013 Au+ ions/cm2, (c) 1 × 1014 Au+ ions/cm2, (d) 5 × 1014 Au+ ions/cm2, (e) 1 × 1015 Au+ ions/cm2, (f) 5 × 1015 Au+ ions/cm2.
UV-Vis absorption spectra of CR-39 (a) pristine and implanted at 400 keV to (b) 5 × 1013 Au+ ions/cm2, (c) 1 × 1014 Au+ ions/cm2, (d) 5 × 1014 Au+ ions/cm2, (e) 1 × 1015 Au+ ions/cm2, (f) 5 × 1015 Au+ ions/cm2.

Fig. 7

Plots of (αhν)1/2 vs. (hν) to determine optical band gap energy of CR-39 polymer (a) pristine and implanted at 400 keV to (b) 5 × 1013 Au+ ions/cm2, (c) 1 × 1014 Au+ ions/cm2, (d) 5 × 1014 Au+ ions/cm2, (e) 1 × 1015 Au+ ions/cm2, (f) 5 × 1015 Au+ ions/cm2.
Plots of (αhν)1/2 vs. (hν) to determine optical band gap energy of CR-39 polymer (a) pristine and implanted at 400 keV to (b) 5 × 1013 Au+ ions/cm2, (c) 1 × 1014 Au+ ions/cm2, (d) 5 × 1014 Au+ ions/cm2, (e) 1 × 1015 Au+ ions/cm2, (f) 5 × 1015 Au+ ions/cm2.

Fig. 8

Plot of optical band gap energy (Eg) and % decrease in band gap energy vs. ion fluence.
Plot of optical band gap energy (Eg) and % decrease in band gap energy vs. ion fluence.

Fig. 9

Plots of ln(α) vs. (hν) to determine Urbach energy of CR-39 (a) pristine and implanted at 400 keV to (b) 5 × 1013 Au+ ions/cm2, (c) 1 × 1014 Au+ ions/cm2, (d) 5 × 1014 Au+ ions/cm2, (e) 1 × 1015 Au+ ions/cm2, (f) 5 × 1015 Au+ ions/cm2.
Plots of ln(α) vs. (hν) to determine Urbach energy of CR-39 (a) pristine and implanted at 400 keV to (b) 5 × 1013 Au+ ions/cm2, (c) 1 × 1014 Au+ ions/cm2, (d) 5 × 1014 Au+ ions/cm2, (e) 1 × 1015 Au+ ions/cm2, (f) 5 × 1015 Au+ ions/cm2.

Fig. 10

Urbach energy vs. ion fluence for 400 keV Au+ ion implanted CR-39.
Urbach energy vs. ion fluence for 400 keV Au+ ion implanted CR-39.

Electrical conductivity of pristine and 400 keV Au+ ion implanted CR-39 with different ion fluences_

Fluence

[ions/cm2]

Electrical conductivity [(Ω· cm)−1]

Pristine

6.84 × 10−09

5 × 1013

7.41 × 10−07

1 × 1014

7.45 × 10−07

5 × 1014

7.64 × 10−07

1 × 1015

1.06 × 10−06

5 × 1015

6.52 × 10−06

Calculated values of Se, Sn and projected range of 400 keV Au+ ions for CR-39_

Ion type

Energy

[keV]

Se

[eV/nm]

Sn

[eV/nm]

Range

[nm]

Au+

400

6.673 × 102

1.689 × 103

220

RMS roughness of pristine and 400 keV Au+ ion implanted CR-39 samples at different ion fluences_

Fluence [ions/cm2]

RMS roughness [nm]

Pristine

1.71

5 × 1013

8.95

5 × 1014

1.02

5 × 1015

0.66

Variation of optical band gap energy Eg [eV], % decrease in band gap energy and Urbach energy Eu [eV], with different implanted fluences of CR-39_

Fluence

[ions/cm2]

Optical band gap energy

Eg [eV]

% decrease in band

gap energy

Urbach energy

Eu [eV]

Pristine

3.15

0.17

5 × 1013

3.06

2.86

0.35

1 × 1014

2.94

6.67

0.68

5 × 1014

1.14

64

0.88

1 × 1015

1.10

65

0.90

5 × 1015

1.05

67

0.91

DOI: https://doi.org/10.1515/msp-2016-0067 | Journal eISSN: 2083-134X | Journal ISSN: 2083-1331
Language: English
Page range: 468 - 478
Submitted on: Aug 30, 2015
Accepted on: May 20, 2016
Published on: Jun 27, 2016
Published by: Wroclaw University of Science and Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2016 Riffat Sagheer, M. Shahid Rafique, Farhat Saleemi, Shafaq Arif, Fabian Naab, Ovidiu Toader, Arshad Mahmood, Rashad Rashid, Irshad Hussain, published by Wroclaw University of Science and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.