Have a personal or library account? Click to login
Graphene synthesis: a Review Cover
By: S. Saqib Shams,  Ruoyu Zhang and  Jin Zhu  
Open Access
|Aug 2016

References

  1. [1] GEIM A.K., NOVOSELOV K.S., Nat Mater., 6 (2007), 183.10.1038/nmat184917330084
  2. [2] ALLEN M.J., TUNG V.C., KANER R.B., Chem. Rev., 110 (2009), 132.10.1021/cr900070d19610631
  3. [3] ENOKI T., SUZUKI M., ENDO M., Graphite Intercalation Compounds and Applications, Oxford University Press, New York, 2003.10.1093/oso/9780195128277.001.0001
  4. [4] DELHAES P., Graphite and precursors, CRC Press, Amsterdam, 2001.10.1201/9781482296921
  5. [5] BOEHM H.P., SETTON R., STUMPP E., Pure. Appl.Chem., 66 (1994), 1893.10.1351/pac199466091893
  6. [6] CASTILLO-MARTINEZ E., CARRETERO-GONZALEZ J., SOVICH J., LIMA M.D., J. Mater. Chem. A, 2 (2014), 221.10.1039/C3TA13292G
  7. [7] PAULING L., The nature of the chemical bond and the structure of molecules and crystals: an introduction to modern structural chemistry, Cornell University Press, Ithaca (NY), 1960.
  8. [8] GEIM A.K., Science, 324 (2009), 1530.10.1126/science.115887719541989
  9. [9] KOTOV N.A., Nature, 442 (2006), 254.10.1038/442254a16855576
  10. [10] RAO C., BISWAS K., SUBRAHMANYAM K., GOVINDARAJ A., J. Mater. Chem., 19 (2009), 2457.10.1039/b815239j
  11. [11] SOLDANO C., MAHMOOD A., DUJARDIN E., Carbon, 48 (2010), 2127.10.1016/j.carbon.2010.01.058
  12. [12] KRISHNAMOORTHY K., KIM G.-S., KIM S.J., Ultrason. Sonochem., 20 (2013), 644.10.1016/j.ultsonch.2012.09.00723089166
  13. [13] EDWARDS R.S., COLEMAN K.S., Nanoscale, 5 (2013) 38.10.1039/C2NR32629A
  14. [14] WARNER J.H., SCHÄ FFEL F., BACHMATIUK A., RÜMMELI M.H., Graphene: Fundamentals and emergent applications, Elsevier, Oxford, 2012.
  15. [15] NOVOSELOV K.S., GEIM A.K., MOROZOV S., JIANG D., ZHANG Y., DUBONOS S., Science, 306 (2004), 666.10.1126/science.110289615499015
  16. [16] DATO A., RADMILOVIC V., LEE Z., PHILLIPS J., FRENKLACH M., Nano Lett., 8 (2008), 2012.10.1021/nl801156618529034
  17. [17] REINA A., JIA X., HO J., NEZICH D., SON H., BULOVIC V., Nano Lett., 9 (2008), 30.10.1021/nl801827v19046078
  18. [18] VERDEJO R., BERNAL M.M., ROMASANTA L.J., LOPEZ-MANCHADO M.A., J. Mater. Chem., 21 (2011), 3301.10.1039/C0JM02708A
  19. [19] PARK S., RUOFF R.S., Nat. Nanotechnol., 4 (2009), 217.10.1038/nnano.2009.5819350030
  20. [20] SEGAL M., Nat. Nanotechnol., 4 (2009), 612.10.1038/nnano.2009.27919809441
  21. [21] GEIM A.K., MACDONALD A.H., Phys. Today, 60 (8) (2007), 35.10.1063/1.2774096
  22. [22] SHENDEROVA O., ZHIRNOV V., BRENNER D., Crit. Rev. Solid State, 27 (2002), 227.10.1080/10408430208500497
  23. [23] SAKAMOTO J., HEIJST VAN J., LUKIN O., SCHLÜTER A.D., Angew. Chem. Int. Edit., 48 (2009), 1030.10.1002/anie.20080186319130514
  24. [24] MEYER J.C., GEIM A.K., Nature, 446 (2007), 60.10.1038/nature0554517330039
  25. [25] MITTAL G., DHAND V., RHEE K.Y., PARK S.-J., LEE W.R., J. Ind. Eng. Chem., 21 (2015), 11.10.1016/j.jiec.2014.03.022
  26. [26] NOVOSELOV K., JIANG D., SCHEDIN F., BOOTH T., KHOTKEVICH V., MOROZOV S., P. Natl. Acad. Sci. USA, 102 (2005), 10451.10.1073/pnas.0502848102118077716027370
  27. [27] JAYASENA B., SUBBIAH S., Nanoscale Res Lett., 6 (2011), 95.10.1186/1556-276X-6-95321224521711598
  28. [28] PATON K.R., VARRLA E., BACKES C., SMITH R.J., KHAN U., Nat. Mater., 13 (2014), 624.10.1038/nmat394424747780
  29. [29] MCALLISTER M.J., LI J.-L., ADAMSON D.H., SCHNIEPP H.C., ABDALA A.A., LIU J., Chem.Mater., 19 (2007), 4396.10.1021/cm0630800
  30. [30] ZHANG Y., LI D., TAN X., ZHANG B., RUAN X., LIU H., Carbon, 54 (2013), 143.10.1016/j.carbon.2012.11.012
  31. [31] ZHAN D., SUN L., NI Z.H., LIU L., FAN X.F., WANG Y., Adv. Funct. Mater., 20 (2010), 3504.10.1002/adfm.201000641
  32. [32] LEE H., KANG J., CHO M.S., CHOI J.-B., LEE Y., J. Mater. Chem., 21 (2011), 18215.10.1039/c1jm13364k
  33. [33] BRUMFIEL G., Nature, 10 (2009), 1038.
  34. [34] JIAO L., ZHANG L., WANG X., DIANKOV G., DAI H., Nature, 458 (2009), 877.10.1038/nature07919
  35. [35] KOSYNKIN D.V., HIGGINBOTHAM A.L., SINITSKII A., LOMEDA J.R., DIMIEV A., PRICE B.K., Nature, 458 (2009), 872.10.1038/nature07872
  36. [36] CHEN J., CHEN L., ZHANG Z., LI J., WANG L., JIANG W., Carbon, 50 (2012), 1934.10.1016/j.carbon.2011.12.044
  37. [37] CHOUCAIR M., THORDARSON P., STRIDE J.A., Nat.Nanotechnol., 4 (2008), 30.10.1038/nnano.2008.365
  38. [38] BISWAL M., BANERJEE A., DEO M., OGALE S., Energ.Environ Sci., 6 (2013), 1249.10.1039/c3ee22325f
  39. [39] CHEN G., WU D., WENG W., WU C., Carbon, 41 (2003), 619.10.1016/S0008-6223(02)00409-8
  40. [40] RAMANATHAN T., STANKOVICH S., DIKIN D., LIU H., SHEN H., NGUYEN S., J. Polym. Sci. Pol. Phys., 45 (2007), 2097.10.1002/polb.21187
  41. [41] DREYER D.R., PARK S., BIELAWSKI C.W., RUOFF R.S., Chem. Soc. Rev., 39 (2010), 228.10.1039/B917103G
  42. [42] ESWARAIAH V., ARAVIND S.S.J., RAMAPRABHU S., J. Mater. Chem., 21 (2011), 6800.10.1039/c1jm10808e
  43. [43] DIKIN D.A., STANKOVICH S., ZIMNEY E.J., PINER R.D., Nature, 448 (2007), 457.10.1038/nature0601617653188
  44. [44] NAIR R., WU H., JAYARAM P., GRIGORIEVA I., GEIM A., Science, 335 (2012), 442.10.1126/science.121169422282806
  45. [45] SHEN B., LU D.D., ZHAI W.T., ZHENG W.G., J.MATER. CHEM. C, 1 (2013), 50.10.1039/C2TC00044J
  46. [46] GURUNATHAN S., HAN J.W., EPPAKAYALA V., KIM J.-H., Int. J. Nanomed., 8 (2013), 1015.10.2147/IJN.S42047365562323687445
  47. [47] PARVEZ K., LI R., PUNIREDD S.R., HERNANDEZ Y., HINKEL F., WANG S., ACS Nano, 7 (2013), 3598.10.1021/nn400576v23531157
  48. [48] LU J., YANG J.-X., WANG J., LIM A., WANG S., LOH K.P., ACS Nano, 3 (2009), 2367.10.1021/nn900546b19702326
  49. [49] HERNANDEZ Y., NICOLOSI V., LOTYA M., BLIGHE F.M., SUN Z., DE S., Nat. Nanotechnol., 3 (2008), 563.10.1038/nnano.2008.21518772919
  50. [50] ALZARI V., NUVOLI D., SCOGNAMILLO S., PICCININI M., GIOFFREDI E., MALUCELLI G., J. Mater. Chem., 21 (2011), 8727.10.1039/c1jm11076d
  51. [51] NUVOLI D., VALENTINI L., ALZARI V., SCOGNAMILLO S., BON S.B., PICCININI M., J. Mater. Chem., 21 (2011), 3428. 10.1039/C0JM02461A
  52. [52] ZHOU M., TIAN T., LI X.F., SUN X.D., ZHANG J., CUI P., Int. J. Electrochem. Sc., 9 (2014), 810.
  53. [53] LOTYA M., HERNANDEZ Y., KING P.J., SMITH R.J., NICOLOSI V., KARLSSON L.S., J. Am. Chem. Soc., 131 (2009), 3611.10.1021/ja807449u19227978
  54. [54] LIU L., ZHAI J., ZHU C., GAO Y., WANG Y., HAN Y., Biosens. Bioelectron., 63 (2015), 483.10.1016/j.bios.2014.07.07425129511
  55. [55] XU Y., BAI H., LU G., LI C., SHI G., J. Am. Chem. Soc., 130 (2008), 5856.10.1021/ja800745y18399634
  56. [56] HAO R., QIAN W., ZHANG L., HOU Y., Chem. Commun., 48 (2008), 6576.10.1039/b816971c19057784
  57. [57] PATIL A.J., VICKERY J.L., SCOTT T.B., MANN S., Adv. Mater., 21 (2009), 3159.10.1002/adma.200803633
  58. [58] ENGLERT J.M., RÖHRL J., SCHMIDT C.D., GRAUPNER R., HUNDHAUSEN M., HAUKE F., Adv. Mater., 21 (2009), 4265.10.1002/adma.200901578
  59. [59] SU Q., PANG S., ALIJANI V., LI C., FENG X., MÜLLEN K., Adv. Mater., 21 (2009), 3191.10.1002/adma.200803808
  60. [60] WOLTORNIST S.J., OYER A.J., CARRILLO J.-M.Y., DOBRYNIN A.V., ADAMSON D.H., ACS Nano, 7 (2013), 7062.10.1021/nn402371c23879536
  61. [61] DENG C., HU H., GE X., HAN C., ZHAO D., SHAO G., Ultrasonics., 18 (2011), 932.10.1016/j.ultsonch.2011.01.00721315647
  62. [62] PINJARI D.V., PANDIT A.B., Ultrasonics., 18 (2011), 1118.10.1016/j.ultsonch.2011.01.00821324726
  63. [63] SAFARIFARD V., MORSALI A., Ultrasonics., 19 (2012), 823.10.1016/j.ultsonch.2011.12.01322261473
  64. [64] RAMADOSS A., KIM S.J., J. Alloy. Compd., 544 (2012), 115.10.1016/j.jallcom.2012.08.005
  65. [65] LEE J.K., LEE K., LEE K.I., GAP L.J., IL L.G., Ball-milled graphene nano-powder or ribbon purifying method, involves separating magnetic impurities during stirring suspension using magnet, where impurities are incorporated into graphene powder during ball-milling, Korea Institute of Science and Technology, Seoul, p. 7.
  66. [66] LEON V., QUINTANA M., HERRERO M.A., FIERRO J.L.G., HOZ DE LA A., PRATO M., Chem. Commun., 47 (2011), 10936.10.1039/c1cc14595a21909539
  67. [67] LIN T., TANG Y., WANG Y., BI H., LIU Z., HUANG F., Energ. Environ Sci., 6 (2013), 1283.10.1039/c3ee24324a
  68. [68] BORAH M., DAHIYA M., SHARMA S., MATHUR R.B., DHAKATE S.R., Mater. Focus, 3 (2014), 300.10.1166/mat.2014.1185
  69. [69] LIU L., XIONG Z., HU D., WU G., CHEN P., Chem. Commun., 49 (2013), 7890.10.1039/c3cc43670e23900550
  70. [70] PAN D., WANG S., ZHAO B., WU M., ZHANG H., WANG Y., Chem. Mater., 21 (2009), 3136.10.1021/cm900395k
  71. [71] EL-KADY M.F., STRONG V., DUBIN S., KANER R.B., Science, 335 (2012), 1326.10.1126/science.121674422422977
  72. [72] MILLER J.R., Science, 335 (2012), 1312.10.1126/science.121913422422970
  73. [73] COTE L.J., CRUZ-SILVA R., HUANG J., J. Am. Chem. Soc., 131 (2009), 11027.10.1021/ja902348k19601624
  74. [74] GAO E., WANG W., SHANG M., XU J., Phys. Chem. Chem. Phys., 13 (2011), 2887.10.1039/C0CP01749C21161101
  75. [75] ABDELSAYED V., MOUSSA S., HASSAN H.M., ALURI H.S., COLLINSON M.M., EL-SHALL M.S., J. Phys. Chem. Lett., 1 (2010), 2804. 10.1021/jz1011143
  76. [76] HUANG L., LIU Y., JI L.-C., XIE Y.-Q., WANG T., SHI W.-Z., Carbon, 49 (2011), 2431.10.1016/j.carbon.2011.01.067
  77. [77] CHICHKOV B., MOMMA C., NOLTE S., ALVENSLEBEN VON F., TÜNNERMANN A., Appl. Phys. A, 63 (1996), 109.10.1007/BF01567637
  78. [78] SOKOLOV D.A., SHEPPERD K.R., ORLANDO T.M., J. Phys. Chem. Lett., 1 (2010), 2633.10.1021/jz100790y
  79. [79] TRUSOVAS R., RATAUTAS K., RAČIUKAITIS G., BARKAUSKAS J., STANKEVIČIENĖ I., NIAURA G., Carbon, 52 (2013), 574.10.1016/j.carbon.2012.10.017
  80. [80] ZHOU Y., BAO Q., VARGHESE B., TANG L.A.L., TAN C.K., SOW C.H., Adv. Mater., 22 (2010), 67.10.1002/adma.20090194220217699
  81. [81] AMINI S., GARAY J., LIU G., BALANDIN A.A., ABBASCHIAN R., J. Appl. Phys., 108 (2010), 094321.10.1063/1.3498815
  82. [82] SUTTER P.W., FLEGE J.-I., SUTTER E.A., Nat. Mater., 7 (2008), 406.10.1038/nmat216618391956
  83. [83] PLETIKOSIĆ I., KRALJ M., PERVAN P., BRAKO R., CORAUX J., N’DIAYE A., Phys. Rev. Lett., 102 (2009), 056808.10.1103/PhysRevLett.102.05680819257540
  84. [84] WEATHERUP R.S., BAYER B.C., BLUME R., DUCATI C., BAEHTZ C., SCHLÖGL R., Nano Lett., 11 (2011), 4154.10.1021/nl202036y21905732
  85. [85] KIM K.S., ZHAO Y., JANG H., LEE S.Y., KIM J.M., KIM K.S., Nature, 457 (2009), 706.10.1038/nature0771919145232
  86. [86] ZHANG Y., ZHANG L., ZHOU C., Accounts Chem. Res., 46 (2013), 2329.10.1021/ar300203n23480816
  87. [87] BAE S., KIM H., LEE Y., XU X., PARK J.-S., ZHENG Y., Nat. Nanotechnol., 574 (2010), 574.10.1038/nnano.2010.13220562870
  88. [88] RAFIEE J., MI X., GULLAPALLI H., THOMAS A.V., YAVARI F., SHI Y., Nat. Mater., 11 (2012), 217.10.1038/nmat322822266468
  89. [89] LENSKI D.R., FUHRER M.S., J. Appl. Phys., 110 (2011), 013720.10.1063/1.3605545
  90. [90] LI X., CAI W., AN J., KIM S., NAH J., YANG D., Science, 324 (2009), 1312.10.1126/science.117124519423775
  91. [91] LEVENDORF M.P., RUIZ-VARGAS C.S., GARG S., PARK J., Nano Lett., 9 (2009), 4479.10.1021/nl902790r19860406
  92. [92] WASSEI J.K., MECKLENBURG M., TORRES J.A., FOWLER J.D., REGAN B., KANER R.B., Small, 8 (2012), 1415.10.1002/smll.20110227622351509
  93. [93] SUTTER P., Nat. Mater. 8 (2009), 171.10.1038/nmat239219229263
  94. [94] OHTA T., BOSTWICK A., MCCHESNEY J., SEYLLER T., HORN K., ROTENBERG E., Phys. Rev. Lett., 98 (2007), 206802.10.1103/PhysRevLett.98.20680217677726
  95. [95] MOROZOV S., NOVOSELOV K., KATSNELSON M., SCHEDIN F., PONOMARENKO L., JIANG D., Phys.Rev. Lett., 97 (2006), 016801.10.1103/PhysRevLett.97.01680116907394
  96. [96] JOBST J., WALDMANN D., SPECK F., HIRNER R., MAUDE D.K., SEYLLER T., http://arxiv.org/abs/0908.1900,2009.
  97. [97] SHEN T., GU J., XU M., WU Y., BOLEN M., CAPANO M., Appl. Phys. Lett., 95 (2009), 172105.10.1063/1.3254329
  98. [98] WU X., HU Y., RUAN M., MADIOMANANA N.K., HANKINSON J., SPRINKLE M., Appl. Phys. Lett., 95 (2009), 223108.10.1063/1.3266524
  99. [99] ALEXANDER-WEBBER J., BAKER A., JANSSEN T., TZALENCHUK A., LARA-AVILA S., KUBATKIN S., Phys. Rev. Lett., 111 (2013), 096601. 10.1103/PhysRevLett.111.09660124033057
  100. [100] TZALENCHUK A., LARA-AVILA S., KALABOUKHOV A., PAOLILLO S., SYVÄ JÄRVI M., YAKIMOVA R., Nat. Nanotechnol., 5 (2010), 186.10.1038/nnano.2009.47420081845
  101. [101] LARA-AVILA S., KALABOUKHOV A., PAOLILLO S., SYVÄJÄRVI M., YAKIMOVA R., FAL’KO V., arXiv:09091193, 2009.
  102. [102] HASS J., VARCHON F., MILLAN-OTOYA J.-E., SPRINKLE M., SHARMA N., HEER DE W.A., Phys.Rev. Lett., 100 (2008), 125504.10.1103/PhysRevLett.100.12550418517883
  103. [103] LIN Y.-M., DIMITRAKOPOULOS C., JENKINS K.A., FARMER D.B., CHIU H.-Y., GRILL A., Science, 327 (2010), 662.10.1126/science.118428920133565
  104. [104] CHAKRABARTI A., LU J., SKRABUTENAS J.C., XU T., XIAO Z., MAGUIRE J.A., J. Mater. Chem., 21 (2011), 9491.10.1039/c1jm11227a
  105. [105] BLAKE P., BRIMICOMBE P.D., NAIR R.R., BOOTH T.J., JIANG D., SCHEDIN F., Nano Lett., 8 (2008), 1704.10.1021/nl080649i18444691
  106. [106] EDA G., FANCHINI G., CHHOWALLA M., Nat. Nanotechnol., 3 (2008), 270.10.1038/nnano.2008.8318654522
  107. [107] LI D., MÜLLER M.B., GILJE S., KANER R.B., WALLACE G.G., Nat. Nanotechnol., 3 (2008), 101.10.1038/nnano.2007.45118654470
  108. [108] RAHAMAN M., ISMAIL A.F., MUSTAFA A., Polym.Degrad. Stabil., 92 (2007), 1421.10.1016/j.polymdegradstab.2007.03.023
  109. [109] KO Y.U., CHO S.-R., CHOI K.S., PARK Y., KIM S.T., KIM N.H., J. Mater. Chem., 22 (2012), 3606.10.1039/c2jm15299a
  110. [110] YAMAGUCHI H., EDA G., MATTEVI C., KIM H., CHHOWALLA M., ACS Nano., 4 (2010), 524.10.1021/nn901496p
  111. [111] NIKOLAEV P., BRONIKOWSKI M.J., BRADLEY R.K., ROHMUND F., COLBERT D.T., SMITH K., Chem. Phys. Lett., 313 (1999), 91.10.1016/S0009-2614(99)01029-5
  112. [112] LIANG F., SADANA A.K., PEERA A., CHATTOPADHYAY J., GU Z., HAUGE R.H., Nano Lett., 4 (2004), 1257.10.1021/nl049428c
  113. [113] YAN Z., PENG Z., CASILLAS G., LIN J., XIANG C., ZHOU H., ACS Nano, 8 (2014), 5061.10.1021/nn501132n404677824694285
  114. [114] IRISSOU E., LEGOUX J.-G., RYABININ A., JODOIN B., MOREAU C., J. Therm. Spray Techn., 17 (2008), 495.10.1007/s11666-008-9203-3
  115. [115] WANG X., ZHI L., MÜLLEN K., Nano Lett. 8 (2008), 323.10.1021/nl072838r18069877
  116. [116] LIANG X., CHANG A.S.P., ZHANG Y., HARTENECK B.D., CHOO H., OLYNICK D.L., CABRINI S., Nano Lett., 9 (1) (2009), 467.10.1021/nl803512z19072062
  117. [117] STANKOVICH S., DIKIN D.A., PINER R.D., KOHLHAAS K.A., KLEINHAMMES A., JIA Y., WU Y., NGUYEN S.T., RUOFF R.S., Carbon, 45 (7) (2007), 1558.10.1016/j.carbon.2007.02.034
  118. [118] WATCHAROTONE S., DIKIN D.A., STANKOVICH S., PINER R., JUNG I., DOMMETT G.H.B., EVMENENKO G., WU S.-E., CHEN S.-F., LIU CH.,-P., NGUEN S.T., RUOFF R.S., Nano Lett., 7 (7) (2007), 1888.10.1021/nl070477+17592880
  119. [119] LI Z., WANG J., LIU X., LIU S., OU J., YANG S.,, J.Mater. Chem., 21 (2011), 3397.10.1039/c0jm02650f
  120. [120] GOMEZ-NAVARRO C., WEITZ R.T., BITTNER A.M., SCOLARI M., MEWS A., BURGHARD M., KERN N., Nano Lett., 7 (11) (2007), 3499. 10.1021/nl072090c17944526
  121. [121] SHEN H., China’s Graphene industry set to skyrocket in 2014, http://investorintel.com/graphite-grapheneintel/chinas-graphene-industry-starts-take-2014/, 2014.
DOI: https://doi.org/10.1515/msp-2015-0079 | Journal eISSN: 2083-134X | Journal ISSN: 2083-1331
Language: English
Page range: 566 - 578
Submitted on: Nov 17, 2014
Accepted on: May 13, 2015
Published on: Aug 30, 2016
Published by: Wroclaw University of Science and Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2016 S. Saqib Shams, Ruoyu Zhang, Jin Zhu, published by Wroclaw University of Science and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.