Have a personal or library account? Click to login
Numerical Evaluation of the Solar Collectors Selfshading Related to their Building Integration Cover

Numerical Evaluation of the Solar Collectors Selfshading Related to their Building Integration

Open Access
|Feb 2018

References

  1. [1]. 31/2010/EU Directive (EPBD Recast) of the European Parliament and European Council, on the Buildings Energy Performance, EU Official Journal, 18.06.2010. pp. L153/13 - L153/35.
  2. [2]. European Commission. (2015). Towards an Integrated Strategic Energy Technology (SET) Plan: Accelerating the European Energy System Transformation, Brussels, C(2015) 6317 final report. 17 pages.
  3. [3]. European Technology Platform on Renewable Heating and Cooling. (2015). Solar Heating and Cooling Technology Roadmap,available at http://www.rhc-platform.org/publications/.
  4. [4]. Deutsche Solarthermie-Technologie Plattform. (2014). Forschungsstrategie Niedertemperatur-Solarthermie 2030, available at http://www.solarthermietechnologie.de/home/dsttp-aktuelles/detailansicht/browse/2/article/35/solarwaerme-f/ .
  5. [5]. Cappel C, Tilmann E.K., Maurer C. (2014). Research and Development Roadmap for façade-integrated solar thermal systems. Fraunhofer-Institut fur Solare Energiesysteme. ISE. 50 pages.
  6. [6]. Kalogirou S.A. et al. (2017). Building Integration of Solar Thermal Systems. Design and Applications Handbook, COST Action TU1205. 455 pages.
  7. [7]. Munari Probst M.C., Roecker C. (2007). Towards an improved architectural quality of building integrated solar thermal systems (BIST).Solar Energy 81. pp.1104-1116.10.1016/j.solener.2007.02.009
  8. [8]. Lamnatou C., Mondol J.D., Chemisana D., Maurer C. (2015). Modelling and simulation of Building-Integrated solar thermal systems :Behaviour of the coupled building/system configuration, Renewable and Sustainable Energy Reviews 48. pp.178-191.
  9. [9]. Lamnatou C., Mondol J.D., Chemisana D., Maurer C. (2015). Modelling and simulation of Building-Integrated solar thermal systems :Behaviour of the system configuration. Renewable and Sustainable Energy Reviews 45. pp.36-51.10.1016/j.rser.2015.03.075
  10. [10]. Delisle V., Kummert M. (2016). Cost-benefit analysis of integrating BIPV-T air systems into energyefficient homes. Solar Energy 136. pp.385-400.10.1016/j.solener.2016.07.005
  11. [11]. Shukla A.K., Sudhakar K., Baredar P. - Recent advancement in BIPV product technologies: A review, Energy and Buildings 140 (2017). pp.188-195.
  12. [12]. Visa I., Moldovan M., Comsit M., Neagoe M., Duta A. (2017). Facades integrated solar-thermal collectors- challenges and solutions. Energy Procedia 112. pp.176-185.10.1016/j.egypro.2017.03.1080
  13. [13]. Dupeyrat P., Menezo C., Fortuin S. (2014). Study of th thermal and electrical performances of PVT solar hot water systems. Energy and Buildings 68. pp. 751-755.10.1016/j.enbuild.2012.09.032
  14. [14]. Fudholi A., Sopian K., Yazdi M.H., Ruslan M.H., Ibrahim A., Kazem H.A. (2014). Performance analysis of photovoltaic thermal (PVT) water collectors. Energy Conversion and Management 78. pp.641-651.10.1016/j.enconman.2013.11.017
  15. [15]. Rommel M., Zenhausern D., Baggenstos A., Turk O., Brunold S. (2015). Development of glazed and unglazed PVT collectors and first results of their application in different projects. Energy Procedia 70. pp.318-323.10.1016/j.egypro.2015.02.129
  16. [16]. Aste N., Del Pero C., Leonforte F. (2012). Optimization of solar thermal fraction in PVT systems. Energy Procedia 30. pp.8-18.10.1016/j.egypro.2012.11.003
  17. [17]. Meteonorm software - available at www.meteonorm.com.
Language: English
Page range: 12 - 26
Published on: Feb 6, 2018
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2018 Andrei Damian, Marian Alexandru, Tiberiu Catalina, published by Technical University of Civil Engineering of Bucharest
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.