Have a personal or library account? Click to login
FLASH-FLOOD MODELLING WITH ARTIFICIAL NEURAL NETWORKS USING RADAR RAINFALL ESTIMATES Cover

FLASH-FLOOD MODELLING WITH ARTIFICIAL NEURAL NETWORKS USING RADAR RAINFALL ESTIMATES

Open Access
|Nov 2017

References

  1. [1] ASCE Task Committee on Application of Artificial Neural Networks in Hydrology (2000 I) Artificial Neural Networks in hydrology: I: preliminary concepts. Journal of Hydrology Engineering. 5(2), 115-123. DOI: 10.1061/(ASCE)1084-0699(2000)5:2(115) 10.1061/(ASCE)1084-0699(2000)5:2(115
  2. [2] ASCE Task Committee on Application of Artificial Neural Networks in Hydrology (2000 II) Artificial Neural Networks in hydrology: II: hydrological applications. Journal of Hydrology Engineering. 5(2), 124-137. DOI: 10.1061/(ASCE)1084-0699(2000)5:2(124) 10.1061/(ASCE)1084-0699(2000)5:2(124
  3. [3] Hsu, K., Vijai Gupta, H., & Sorooshian, S. (1995), Artificial neural network modeling of the rainfall-runoff process. Water Resources Research. 31(10), 2517-2530. DOI: 10.1029/95WR01955 10.1029/95WR01955
  4. [4] Minns, A. W. & Hall, M. J. (1996). Artificial neural networks as rainfall-runoff models. Hydrological Sciences Journal, 41(3), 399-417. 10.1080/02626669609491511
  5. [5] Dawson, C. W. & Wilby, R. (1998), An artificial neural network approach to rainfall-runoff modelling. Hydrological Sciences Journal. 43(1), 47-66. DOI: 10.1080/02626669809492102 10.1080/02626669809492102
  6. [6] Abrahart, R. J. & See, L. M. (2007), Neural network modelling of non-linear hydrological relationships. Hydrology and Earth System Sciences. 11, 1563-1579. DOI: 10.5194/hess-11-1563-2007 10.5194/hess-11-1563-2007
  7. [7] Solomatine, D. P. & Ostfeld, A. (2008), Data-driven modelling: Some past experiences and new approaches. Journal of Hydroinformatics. 10(1), 3-22. DOI: 10.2166/hydro.2008.015 10.2166/hydro.2008.015
  8. [8] Haykin, S. (1998), Neural Networks - A comprehensive foundation. Upper Saddle River, New Jersey, USA: Prentice-Hall.
  9. [9] Hagan, M. T., Demuth, H. B., Beale, M. H. & De Jesus, O. (2014). Neural Network Design (2nd ed.). From http://hagan.okstate.edu/NNDesign.pdf.
  10. [10]Levenberg, K. (1944). A Method for the Solution of Certain Non-Linear Problems in Least Squares. Quarterly of Applied Mathematics. 2: 164-168.
  11. [11] Marquardt, D. (1963). An Algorithm for Least-Squares Estimation of Nonlinear Parameters. SIAM Journal on Applied Mathematics. 11 (2): 431-441. DOI:10.1137/011103010.1137/0111030
  12. [12]WMO (2008), Guide to Hydrological Practices Volume I: Hydrology - From Measurement to Hydrological Information (6th ed.), World Meteorological Organization, No. 168
  13. [13] Nash, J. E. & Sutcliffe, J. V. (1970), River flow forecasting through conceptual models I: A discussion of principles Journal of Hydrology. 10, 282-290. DOI: 10.1016/0022-1694(70)90255-6 10.1016/0022-1694(70)90255-6
  14. [14]Coulibaly, P. & Baldwin, C. K. (2005), Nonstationary hydrological time series forecasting using nonlinear dynamic methods. J. Hydrol. 307, 164-174. 10.1016/j.jhydrol.2004.10.008
  15. [15]Solomatine, D. P. & Dulal, K. N. (2003), Model trees as an alternative to neural networks in rainfall-runoff modelling. Hydrological Sciences Journal. 48, 399-411. DOI: 10.1623/hysj.48.3.399.45291 10.1623/hysj.48.3.399.45291
Language: English
Page range: 10 - 20
Published on: Nov 7, 2017
Published by: Technical University of Civil Engineering of Bucharest
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2017 Cristian Dinu, Radu Drobot, Claudiu Pricop, Tudor Viorel Blidaru, published by Technical University of Civil Engineering of Bucharest
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.