Have a personal or library account? Click to login
Mathematical Modelling for Micropiles Embedded in Salt Rock Cover

Mathematical Modelling for Micropiles Embedded in Salt Rock

Open Access
|May 2016

References

  1. [1]. Radan, G. (2014). Micropiles axially loaded in karst terrain. Mathematical Modelling in Civil Engineering, Special Issue, Y.R.C. 2014, from http://mmce.rs.utcb.ro/wiew-articles/archive1/18-2014/58-scientific-journal-special-issue1.html.
  2. [2]. Seo, H. & Prezzi, M. (2008). Use of Micropiles for Foundations of Transportation Structures Final Report. Joint Transportation Research Program: Purdue University.10.5703/1288284314318
  3. [3]. Radan, G. (2015). Methods of foundation and stabilization of terrains with micropiles. Unpublished Doctoral Thesis, Technical University of Civil Engineering Bucharest, Romania.
  4. [4]. Schein, T. (2008). Geotechnical Expertise Report, Slanic Prahova county. No. 275-EG/November 2008. Timisoara.
  5. [5]. Arad S., Arad V., Onica I., Oprina A. & Chipesiu F. (2010). Stability Study for a Large Cavern in Salt Rock from Slanic Prahova. Acta Physica Polonica B, Vol. 41 (2010), No.7.
  6. [6]. SC All Inclusive SRL. (2009). Testing Report with static vertical forces to axial compression drilled micropile, Slanic –Prahova, Baia –Verde. No 174/05.03.2009. Bucharest.
  7. [7]. Seo H., Prezzi M. & Salgado R. (2013). Instrumented static load tests on rock-socked micropile. Journal of Geotechnical and Geoenvironmental Engineering. DOI:10.1061/(ASCE)GT.1943-5606.0000946.10.1061/(ASCE)GT.1943-5606.0000946
  8. [8]. Salgado R., Prezzi M. & Seo H. (2007). Advanced Modeling Tools for the Analysis of axially Loaded Piles. Advances in Deep Foundations. International Workshoop on Recent Advances of Deep Foundations (IWDPF07) 1-2 Febr. 2007, pg 49-67, print ISBN: 978-0-415-43629-8, e-Book ISBN: 978-0-203-93841-6, DOI: 10.1201/9780203938416.ch3.10.1201/9780203938416.ch3
  9. [9]. Wolosick J.R., Bonar E. & Nufer P.J. (2007). Micropile foundation repair and underpinning, Arts and Science Museum, University of Puerto-Rico, Mayaguez. 8th International Workshop on Micropiles, Toronto, 2007, from http://www.ismicropiles.org.
  10. [10]. Dao, T.P.T.(2011). Validation of Plaxis embedded piles for lateral loading. MSc Thesis. Delft University of Technology
  11. [11]. MIDAS Engineering Software, from http://en.midasuser.com/product/gtsnx_overview.asp
  12. [12]. Elkasabgy M. & El Naggar M.H. (2007). Finite element analysis of the axial capacity of micropile. IWM, Toronto, Canada 2007, from http://www.ismicropiles.org
  13. [13]. Elarabi, H. & Alhadi Alshareef M. Numerical Analysis of Failure Mode of Micropile in Cohesive Soil. (2014). BRR Journal, BRRI, U. of K., Vol. xx, month 2014, from http://khartoumspace.uofk.edu.
  14. [14]. Plaxis 2d Tutorial Manual (2015), from http://www.plaxis.nl/plaxis2d/
  15. [15]. Bivens, M.J. & Siegel, T.C. (2007). Case histories of micropile in karst : The influence of installation on design performance. GSP 158 Contemporary Issues in Deep Foundations, GeoDenver Conference, Geotechnical Special Publication No. 158, ASCE.10.1061/40902(221)27
Language: English
Page range: 23 - 35
Published on: May 9, 2016
Published by: Technical University of Civil Engineering of Bucharest
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2016 Georgiana Rădan (Toader), Nicoleta Rădulescu, Gheorghe Oancea, published by Technical University of Civil Engineering of Bucharest
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.