Have a personal or library account? Click to login
Harmonic numbers, harmonic series and zeta function Cover
By: Ahmed Sebbar  
Open Access
|May 2019

References

  1. [1] Arakawa, T., Ibukiyama, T. and Kaneko, M. Bernoulli Numbers and Zeta Functions, Springer, Tokyo, 2014.10.1007/978-4-431-54919-2
  2. [2] Ablowitz, M., Chakravarty, S., and Takhtajan, L. Integrable systems, self-dual Yang-Mills equations and connections with modular forms, Univ. Colorado Preprint PAM # 113 (December 1991).
  3. [3] P. T. Bateman, P. T. Chowla, S. Some special trigonometric series related to the distribution of prime numbers, J. London Math. Soc. 38 (1963), 372-374.10.1112/jlms/s1-38.1.372
  4. [4] Berndt, B.C., Dixit, A., Kim, S. and Zaharescu. A. Sums of squares and products of Bessel functions, Advances in Mathematics, Vol. 338 (2018) 305-338.
  5. [5] Berndt, B.C., Evans, R.J. Chapter 7 of Ramanujan’s second note book, Proc. Indian Acad. Sci. (Math. Sci.), 92 (1983), 67-96.10.1007/BF02863011
  6. [6] Besicovitch. A. S. Problem on continuity, Journal London Math. Soc, 36 (1961) 388-392.
  7. [7] Bochner, S. Connection between functional equations and modular relations and functions of exponential type. J. Indian Math. soc.,16 (1952) 99-102.
  8. [8] Borwein, D. J. M. Borwein, J.M. and Taylor K. F., Convergence of lattice sums and Madelungs constant, J. Math. Phys. 26 (1985), 2999-3009.10.1063/1.526675
  9. [9] Bost, J.-B. Le thĂ©orĂšme des nombres premiers et la transformation de Fourier, in La fonction zĂȘta, Nicole Berline and Claude Sabbah, editors. Éditions de lÉcole Polytechnique, Palaiseau, 2003. Available at //http:www.math.polytechnique.fr/xups/xups02-01.pdf
  10. [10] Carlitz, L. On a Problem in Additive Arithmetic. II. Quart. J. Math. 3, 273-290, 1932.10.1093/qmath/os-3.1.273
  11. [11] Chowla, S. The Riemann Hypothesis and Hilbert’s Tenth Problem. Mathematics and Its Applications 4, Gordon and Breach Science Publishers, New York, 1965.
  12. [12] Clarkson, P., Olver, P. Symmetry and the Chazy equation, J. Diff. Eq. 124 1996) 225-246.10.1006/jdeq.1996.0008
  13. [13] Crandall, R.E., Buhler, J.P. Elementary function expansions for Madelung constants, J. Phys. A: Math. Gen. 20 (1987) 5497-5510.10.1088/0305-4470/20/16/024
  14. [14] Crandall, R.E., Pomerance, C.B., Prime Numbers: A Computational Perspective. 2nd edition, Springer- Verlag, New York.
  15. [15] Cohen, H. High Precision Computation of Hardy-Littlewood Constants. Available at http://www.math.u-bordeaux.fr/~cohen/hardylw.dvi.
  16. [16] Davenport, H. On some infinite series involving arithmetical functions (II), Quart J. of Math. 8 (1937), 313-320.10.1093/qmath/os-8.1.313
  17. [17] Ellison, W. J. (en collaboration avec M. MendĂšs France), Les nombres premiers, Hermann, 1975.
  18. [18] Emersleben, O. Über die Konvergenz der Reihen Epsteinscher Zetafunktionen, Math. Nachr 4 (1951) 468-480.10.1002/mana.3210040140
  19. [19] Erdélyi, A. Magnus, W. Oberhettinger, F. Tricomi, F.G. Higher Transcendental Functions, Vol.1, McGraw-Hill 1953.
  20. [20] Fröberg, C.-E. On the Prime Zeta Function. BIT 8, 187-202, 1968.10.1007/BF01933420
  21. [21] Furstenberg, H. Ergodic behavior of diagonal measures and a theorem of SzemerĂ©di on arithmetic progressions”. J. d’Analyse Math. 31(1977), 204-256.
  22. [22] Glaisher, J. W. L. On the Sums of Inverse Powers of the Prime Numbers. Quart. J. Math. 25, 347-362, 1891.
  23. [23] Govers, T. A new proof of SzemerĂ©di’s theorem. Geom. Funct. Anal. 11 (3)(2001) 465-588.10.1007/s00039-001-0332-9
  24. [24] Green, B., Tao. T. The primes contain arbitrarily long arithmetic progressions, Ann. of Math. (2) 167 (2008), no. 2, 481-547.
  25. [25] Grosswald, E. Representations as Sums of Three Squares, Springer-Verlag, New York, 1985.10.1007/978-1-4613-8566-0
  26. [26] Guinand A.P. Some Fourier transforms in prime-number theory, Quart. J. Math., Oxford 18 (1947), 53-64.10.1093/qmath/os-18.1.53
  27. [27] Hardy, G.H. On the expression of a number as the sum of two squares, Quart. J. Pure Appl. Math.46 (1915), 263283.
  28. [28] Hardy, G.H. Divergent Series. New York, Oxford University Press, 1949.
  29. [29] Hardy, G.H., Littelwood, J.E. Contributions to the theory of the Riemann z-function and the theory of the distribution of primes. Acta Math. 41 (1918) 119-196.
  30. [30] Havel, J. Gamma: Exploring Euler’s Constant, Princeton University Press, Princeton, NJ, 2003.
  31. [31] Hurwitz, A, Über die Entwicklungskoeffizienten der lemniskatischen Funktionen, Nachr. Ges. Wiss. Göttingen, 273-276 [ = Mathematische Werke, vol. II, 338-341]10.1007/978-3-0348-4160-3_23
  32. [32] Hurwitz, A., Über die Entwicklungskoeffizienten der lemniskatischen Funktionen, Mathematische Annalen 51, 196-226 [ = Mathematische Werke, vol. II, 342-373]10.1007/978-3-0348-4160-3_24
  33. [33] Johnson, W. P. The Curious History of Faà di Bruno’s Formula, Amer. Math. Monthly 109 (2002) 217-234.
  34. [34] Kac, M. Almost periodicity and the representation of integers as sums of squares. Am. J. Math. 62 (1940), 122-126.
  35. [35] Kato, K., Kurokawa, N. and Takeshi, S. Number Theory 1: Fermat’s Dream. American Mathematical Society, Providence 1993,
  36. [36] Lagarias, J. An elementary problem equivalent to the Riemann hypothesis, The American Mathematical Monthly, 109 (6): 534-543.10.1080/00029890.2002.11919883
  37. [37] Landau, E., Walfisz, A. Über die Nichtfortsetzbarkeit einiger durch Dirichletsche Reihen definierter Funktionen, Rend. di Palermo, 44 (1919), 82-86.10.1007/BF03014596
  38. [38] Laurent, H. Sur la théorie des nombres premiers. C.R. Acad. Sci. Paris, 126 (1898) 809-810.
  39. [39] Lindelöf. E. Le Calcul des résidus, Paris, 1905.
  40. [40] Manin, Yu. Lectures on zeta functions and motives (according to Deninger and Kurokawa), in: Columbia University Number Theory Seminar (New York, 1992), Astérisque 228 (1995) 121-163.
  41. [41] MendĂšs France, M., Sebbar, A. Pliages de papiers, fonctions thĂȘta et mĂ©thode du cercle, Acta Math. t.183, 1999, p.101-139.10.1007/BF02392948
  42. [42] Milnor, J. On polylogarithms, Hurwitz ζ-functions, and their Kubert identities. Enseign. Math. (2) 29(1983), 281-322.
  43. [43] Odlyzko, A.M., te Riele, H. J., J. Disproof of the Mertens Conjecture, J. reine angew. Math., 357 (1985), 138-160.
  44. [44] Pappalardi, F. A survey on k-freeness, Ramanujan Mathematical Society Lecture Notes Series, No. 1, edited by S. D. Adhikari, R. Balasubramaniam, K. Srinivas, 2004, pp. 71-88.
  45. [45] Picard, E. Leçons sur quelques equations fonctionnelles, Paris, 1928.
  46. [46] Ramanujan, S. On certain arithmetical functions, Trans. Cambridge Philos. Soc. 22 (1916) 159-84.
  47. [47] Rademacher, H. Topics in analytic number theory. Die Grundlehren der math. Wissenschaften, Band 169, Springer-Verlag, Berlin, 197310.1007/978-3-642-80615-5
  48. [48] Rankin, R.A. Modular Forms and Functions, Cambridge Univ. Press, Cambridge, 1977.10.1017/CBO9780511566035
  49. [49] Riesz, M. Sur l’hypothùse de Riemann, Acta Math. 40 (1916), 185-190.10.1007/BF02418544
  50. [50] Robin, G., Grandes valeurs de la fonction somme des diviseurs et hypothĂšse de Riemann, J. Math. Pures Appl. (9) 63 (1984), no. 2, 187-213.
  51. [51] Sebbar, A., Meguedemi, D. Faà di Bruno’s Formula and Modular forms, Complex Analysis and Operator Theory, January 2016, Volume 10, Issue 2, 409-435.10.1007/s11785-015-0494-3
  52. [52] Sebbar, A. Folding paper and modular functions, RIMS KÎkyûroku Bessatsu, B 52 (2014), 97-126.
  53. [53] Sebbar, A. On two lacunary series and modular curves, The Mathematical Legacy of Leon Ehrenpreis, Springer, 2012, p.275-297.10.1007/978-88-470-1947-8_18
  54. [54] Szemerédi, E. On sets of integers containing no k elements in arithmetic progression. Acta Arithmetica. 27(1975) 199-245.
  55. [55] Titchmarsh, E.C. The theory of the Riemann zeta-Function, Oxford University Press, 1951.
  56. [56] Watson, G. N. A Treatise on the Theory of Bessel Functions. Cambridge University Press, Cambridge, second edition, 1944.
  57. [57] Weil, A. Remarks on Hecke’s lemma and its use, in Algebraic Number Theory, Intern. Symposium, Kyoto 1976, S. Iyanaga(ed.) Jap. Soc. for the promotion of Science (1977) 267-274, Collected Works III pp. 405-412.
  58. [58] Wiener, N. The Fourier integral and certain of its applications. Dover, New York, 1958.
  59. [59] Zagier, D. Elliptic Modular Forms and Their Applications in: The 1-2-3 of Modular Forms, Universitext, Springer-Verlag, Berlin, Heidelberg, 2008.10.1007/978-3-540-74119-0_1
DOI: https://doi.org/10.1515/mjpaa-2018-0012 | Journal eISSN: 2351-8227
Language: English
Page range: 122 - 157
Submitted on: Feb 20, 2019
Accepted on: Apr 7, 2019
Published on: May 16, 2019
Published by: Sciendo
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2019 Ahmed Sebbar, published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.