Have a personal or library account? Click to login
Opial type inequalities for double Riemann-Stieltjes integrals Cover

Opial type inequalities for double Riemann-Stieltjes integrals

By: Hüseyin Budak  
Open Access
|May 2019

References

  1. [1] R.P. Agarwal and P. Y. H. Pang,: Sharp opial-type inequalities in two variables. Appl Anal. 56(3):227–242 (1996).10.1080/00036819508840324
  2. [2] H. Budak and Sarikaya, Refinements of Opial type inequalities in two variables, ResearchGate Article: www.researchgate.net/publication/329091454.
  3. [3] Z. Changjian, and W. Cheung,On improvements of Opial-type inequalities. Georgian Mathematical Journal, 21(4), pp. 415-419, 2014.10.1515/gmj-2014-0039
  4. [4] W.S. Cheung, Some new Opial-type inequalities, Mathematika, 37 (1990), 136–142.10.1112/S0025579300012869
  5. [5] W.S. Cheung, Some generalized Opial-type inequalities, J. Math. Anal. Appl., 162 (1991), 317–321.10.1016/0022-247X(91)90152-P
  6. [6] W.S. Cheung, On Opial-type inequalities in two variables, Aequationes Mathematicae 38 (1989) 236-244.10.1007/BF01840008
  7. [7] W.S. Cheung, Opial-type inequalities with m functions in n variables. Mathematika, 39(2), 319-326, 1992.10.1112/S0025579300015047
  8. [8] S. S. Dragomir, Generalizations of Opial’s inequalities for two functions and applications, Preprint RGMIA Res. Rep. Coll. 21 (2018), Art. 64.
  9. [9] S. S. Dragomir,Generalizations of Opial’s inequalities for Riemann-Stieltjes integrals with applications, Preprint RGMIA Res. Rep. Coll. 21 (2018), Art. 69.
  10. [10] C. T. Lin and G. S.Yang, A generalized Opial’s inequality in two variables. Tamkang J. Math. 15 (1984), 115-122.
  11. [11] F. Moricz, Order of magnitude of double Fourier coefficients of functions of bounded variation, Analysis (Munich), 22(4), 2002, 335-345.10.1524/anly.2002.22.4.335
  12. [12] Z. Opial, Sur une inegaliti, Ann. Polon. Math. 8 (1960), 29-32.10.4064/ap-8-1-29-32
  13. [13] B. G. Pachpatte, On Opial-type integral inequalities , J. Math. Anal. Appl. 120 (1986), 547–556.10.1016/0022-247X(86)90176-9
  14. [14] B. G. Pachpatte, Some inequalities similar to Opial’s inequality , Demonstratio Math. 26 (1993), 643–647.
  15. [15] B. G. Pachpatte, A note on some new Opial type integral inequalities, Octogon Math. Mag. 7 (1999), 80–84.
  16. [16] B. G. Pachpatte, On some inequalities of the Weyl type, An. Stiint. Univ. “Al.I. Cuza” Iasi 40 (1994), 89–95.
  17. [17] B. G. Pachpatte. On Opial type integral inequalities, J. Math. Analy. Appl., 120, 547-556 (1986).10.1016/0022-247X(86)90176-9
  18. [18] B. G. Pachpatte, On two inequalities similar to Opial’s inequality in two independent variables, Periodica Math. Hungarica 18, 137-141, 1987.10.1007/BF01896288
  19. [19] B. G. Pachpatte, On an inequality of opial type in two variables, Indian J. Pure Appl. Math., 23(9), 657-661, 1992.
  20. [20] B.G. Pachpatte, On two independent variable Opial-type integral inequalities, J. Math. Anal. Appl. 125(1987), 47-57.10.1016/0022-247X(87)90163-6
  21. [21] B.G. Pachpatte, On Opial type inequalities in two independent variables, Proc. Royal Soc. Edinburgh , 100A(1985), 263-270.10.1017/S0308210500013809
  22. [22] B.G. Pachpatte, On certain two dimensional integral inequalities, Chinese J. Math. 17.No. 4 (1989) 273-279.
  23. [23] B.G. Pachpatte, On multidimensional Opial-type inequalities, J. Math. Anal. Appl., 126(1), 85-89, 1987.10.1016/0022-247X(87)90076-X
  24. [24] B.G. Pachpatte, On some new integral inequalities in ceveral independent variables, Chinese Journal of Mathematics, 14(2), 69–79, 1986.
  25. [25] B.G. Pachpatte, Inequalities of Opial type in three independent variables, Tamkang Journal of Mathematics 35(2), 145-158, 2004.10.5556/j.tkjm.35.2004.216
  26. [26] H. M. Srivastava, K.-L. Tseng, S.-J. Tseng and J.-C. Lo, Some weighted Opial-type inequalities on time scales, Taiwanese J. Math., 14 (2010), 107–122.10.11650/twjm/1500405730
  27. [27] Traple, J., On a boundary value problem for systems of ordinary differential equations of second order, Zeszyty Nauk. Univ. Jagiello. Prace Mat. 15 (1971), 159–168.
  28. [28] C.-J. Zhao and W.-S. Cheung, On Opial-type integral inequalities and applications. Math. Inequal. Appl. 17 (2014), no. 1, 223–232.
  29. [29] G. S. Yang. Inequality of Opial-type in two variables. Tamkang J. Math. 13 (1982), 255-259.
Language: English
Page range: 111 - 121
Submitted on: Feb 27, 2019
Accepted on: Apr 7, 2019
Published on: May 16, 2019
Published by: Sciendo
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2019 Hüseyin Budak, published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.