Have a personal or library account? Click to login
Lp –Error Bounds of Two and Three–Point Quadrature Rules For Riemann–Stieltjes Integrals Cover

Lp –Error Bounds of Two and Three–Point Quadrature Rules For Riemann–Stieltjes Integrals

Open Access
|Feb 2019

References

  1. [1] M.W. Alomari, Two-point Ostrowski’s inequality, Results in Mathematics, 72 (3) (2017), 1499–1523.10.1007/s00025-017-0720-6
  2. [2] M.W. Alomari, On Beesack–Wirtinger inequality, Results in Mathematics, 72 (3) (2017), 1213–1225.10.1007/s00025-016-0644-6
  3. [3] M.W. Alomari and S.S. Dragomir, Mercer-Trapezoid rule for Riemann–Stieltjes integral with applications, Journal of Advances in Mathematics, 2 (2) (2013), 67–85.
  4. [4] M.W. Alomari, A companion of Ostrowski’s inequality for the Riemann-Stieltjes integral ∫abf(t) du(t)$\int_a^b {f(t)} \,du(t)$, where f is of bounded variation and u is of r-H-Hölder type and applications, Appl. Math. Comput., 219 (2013), 4792–4799.10.1016/j.amc.2012.10.105
  5. [5] M.W. Alomari, New sharp inequalities of Ostrowski and generalized trapezoid type for the Riemann–Stieltjes integrals and applications, Ukrainian Mathematical Journal, 65 (7) 2013, 895–916.10.1007/s11253-013-0837-z
  6. [6] M.W. Alomari, Approximating the Riemann-Stieltjes integral by a three-point quadrature rule and applications, Konuralp J. Math., 2 (2) (2014), 2234.
  7. [7] M.W. Alomari, Two point Gauss-Legendre quadrature rule for Riemann-Stieltjes integrals, Preprint (2014). Avaliable at https://arxiv.org/pdf/1402.4982.pdf
  8. [8] M.W. Alomari, A sharp companion of Ostrowski’s inequality for the Riemann–Stieltjes integral and applications, Ann. Univ. Paedagog. Crac. Stud. Math., 15 (2016), 69–78.
  9. [9] M.W. Alomari and S.S. Dragomir, A three-point quadrature rule for the Riemann-Stieltjes integral, Southeast Asian Bulletin Journal of Mathematics, in press
  10. [10] N.S. Barnett, S.S. Dragomir and I. Gomma, A companion for the Ostrowski and the generalised trapezoid inequalities, Mathematical and Computer Modelling, 50 (2009), 179–187.10.1016/j.mcm.2009.04.005
  11. [11] N.S. Barnett, W.-S. Cheung, S.S. Dragomir, A. Sofo, Ostrowski and trapezoid type inequalities for the Stieltjes integral with Lipschitzian integrands or integrators, Computer & Mathematics with Applications, 57 (2009), 195–201.10.1016/j.camwa.2007.07.021
  12. [12] P. Cerone, S.S. Dragomir, New bounds for the three-point rule involving the Riemann-Stieltjes integrals, in: C. Gulati, et al. (Eds.), Advances in Statistics Combinatorics and Related Areas, World Science Publishing, 2002, pp. 53–62.10.1142/9789812776372_0006
  13. [13] P. Cerone, S.S. Dragomir, Approximating the Riemann–Stieltjes integral via some moments of the integrand, Mathematical and Computer Modelling, 49 (2009), 242–248.10.1016/j.mcm.2008.02.011
  14. [14] S.S. Dragomir, On the Ostrowski inequality for Riemann–Stieltjes integral ∫abf(t) du(t)$$\int_a^b {f(t)} \,du(t) where f is of Hölder type and u is of bounded variation and applications, J. KSIAM, 5 (2001), 35–45.
  15. [15] S.S. Dragomir, On the Ostrowski’s inequality for Riemann-Stieltes integral and applications, Korean J. Comput. & Appl. Math., 7 (2000), 611–627.10.1007/BF03012272
  16. [16] S.S. Dragomir, C. Buşe, M.V. Boldea, L. Braescu, A generalisation of the trapezoid rule for the Riemann-Stieltjes integral and applications, Nonlinear Anal. Forum 6 (2) (2001) 33–351.
  17. [17] S.S. Dragomir, Some inequalities of midpoint and trapezoid type for the Riemann-Stieltjes integral, Nonlinear Anal. 47 (4) (2001) 2333–2340.10.1016/S0362-546X(01)00357-1
  18. [18] S.S. Dragomir, Approximating the Riemann-Stieltjes integral in terms of generalised trapezoidal rules, Nonlinear Anal. TMA 71 (2009) e62–e72.10.1016/j.na.2008.10.004
  19. [19] S.S. Dragomir, Approximating the Riemann-Stieltjes integral by a trapezoidal quadrature rule with applications, Mathematical and Computer Modelling 54 (2011) 243–260.10.1016/j.mcm.2011.02.006
  20. [20] W. Gautschi, On generating orthogonal polynomials, SIAM J. Sci. Stat. Comput., 3 (1982), 289–317.10.1137/0903018
  21. [21] A. Guessab and G. Schmeisser, Sharp integral inequalities of the Hermite-Hadamard type, J. Approx. Th., 115 (2002), 260–288.10.1006/jath.2001.3658
  22. [22] P.R. Mercer, Hadamard’s inequality and trapezoid rules for the RiemannStieltjes integral, J. Math. Anal. Appl. 344 (2008) 921–926.10.1016/j.jmaa.2008.03.026
  23. [23] M. Munteanu, Quadrature formulas for the generalized Riemann-Stieltjes integral, Bull. Braz. Math. Soc. (N.S.) 38 (1) (2007) 39-50.10.1007/s00574-007-0034-5
  24. [24] M. Tortorella, Closed Newton-Cotes quadrature rules for Stieltjes integrals and numerical convolution of life distributions, SIAM J. Sci. Stat. Comput. 11 (1990) 732–748.10.1137/0911043
Language: English
Page range: 33 - 43
Submitted on: Dec 17, 2018
Accepted on: Dec 31, 2018
Published on: Feb 1, 2019
Published by: Sciendo
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2019 Mohammad W. Alomari, Allal Guessab, published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.