Have a personal or library account? Click to login
On the characterization of Jensen m-convex polynomials Cover

On the characterization of Jensen m-convex polynomials

Open Access
|Jul 2018

References

  1. [1] H. Anton, Calculus, with analytic geometry. 2nd Edition, John Wiley & Sons, New York, 1984.
  2. [2] G. H. Hardy, J. E. Litlewood and G. Pólya, Inequalities, Cambridge University Press, London, 1934.
  3. [3] J. L. W. V. Jensen, Sur les fonctions convexes et les inegalites entre les valeurs moyennes, Acta Math., 30, (1906), 175–193.10.1007/BF02418571
  4. [4] T. Lara, J. Matkowski, N. Merentes, R. Quintero and M. Wróbel, A generalization of m-convexity and a sandwich theorem, Ann. Math. Sil., 31 (2017), no. 1, 107–126.
  5. [5] T. Lara, R. Quintero, E. Rosales and J. L. Sánchez, On a generalization of the class of Jensen convex functions, Aequat. Math., 90 (2016), 569–580.10.1007/s00010-016-0406-2
  6. [6] T. Lara, N. Merentes and K. Nikodem, Strong h-convexity and separation theorems, Int. J. Anal., Volume 2016 (2016), Article ID 7160348, 5 pages.10.1155/2016/7160348
  7. [7] T. Lara, N. Merentes, R. Quintero and E. Rosales, Properties of Jensen m-convex functions, International Journal of Mathematical Analysis, Vol. 10, 2016, no. 16, 795 – 805.10.12988/ijma.2016.511275
  8. [8] P. T. Mocanu, I. Serb and G. Toader, Real star-convex functions, Studia Univ. Babes-Bolyai, Math., vol. 42, 3, (1997), 65–80.
  9. [9] T. Popoviciu, Les fonctions convexes, Act. Sci. et Industr, Paris, 1945.
  10. [10] A. W. Roberts and D. E. Varberg, Convex Functions, Academic Press, New York, 1973.
  11. [11] G. Toader, Some generalizations of the convexity, Proc. Colloq. Approx. Optim. Cluj-Napoca (Romania), (1984), 329–338.
  12. [12] G. Toader, On a general type of convexity, Studia Univ. Babes-Bolyai, Math., vol. 31, 4, (1986), 27–40.
  13. [13] G. Toader, On a generalization of the convexity, Mathematica, 30, 53, (1988), 83–87.
  14. [14] G. Toader, The hierarchy of convexity and some classic inequalities, J. Math. Inequ., 3, 3, (2009), 305–313.10.7153/jmi-03-30
  15. [15] S. Toader, The order of a star-convex function, Bullet. Applied & Comp. Math., 85, B, (1998), 347–350.
Language: English
Page range: 140 - 148
Submitted on: Sep 15, 2017
Accepted on: May 10, 2018
Published on: Jul 28, 2018
Published by: Sciendo
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2018 Teodoro Lara, Nelson Merentes, Roy Quintero, Edgar Rosales, published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.