Have a personal or library account? Click to login
A universal meteorological method to identify potential risk of wind erosion on heavy-textured soils Cover

A universal meteorological method to identify potential risk of wind erosion on heavy-textured soils

Open Access
|Aug 2015

References

  1. AMÉZKETA, E., ARAGÜÉS, R., CARRANZA, R., URGEL, B. (2003): Macro- and micro-aggregate stability of soils determined by a combination of wet-sieving and laser-ray diffraction. Spanish Journal of Agricultural Research, 1: 83–94.10.5424/sjar/2003014-50
  2. ANDERSON, C. H., WENHARDT, A. (1966): Soil erodibility, fall and spring. Canadian Journal of Soil Science, 46(3): 255–259.10.4141/cjss66-040
  3. BECHMANN, M. E., KLEINMAN, P. J., SHARPLEY, A. N., SAPORITO, L. S. (2005): Freeze–thaw effects on phosphorus loss in runoff from manured and catch-cropped soils. Journal of Environmental Quality, 34(6): 2301–2309.10.2134/jeq2004.041516275731
  4. BENOIT, G. R. (1973): Effect of freeze-thaw cycles on aggregate stability and hydraulic conductivity of three soil aggregate sizes. Soil Science Society of America Proceedings, 37(1): 3–5.10.2136/sssaj1973.03615995003700010007x
  5. BIELEK, P., ČURLÍK, J., FULAJTÁR, E., HOUŠKOVÁ, B., ILAVSKÁ, B., KOBZA, J. (2005): Soil survey and managing of soil data in Slovakia. In: Soil resources of Europe, second edition. Research report No. 9 (pp. 317–329). The European Soil Bureau, Ispra, Italy.
  6. BORELLI, P., BALLABIO, C., PANAGOS, P., MONTANARELLA, L. (2014): Wind erosion susceptibility of European soils. Geoderma, 232–234: 471–478.10.1016/j.geoderma.2014.06.008
  7. BORŮVKA, L., VALLA, M., DONÁTOVÁ, H., NĚMEČEK, K. (2002): Vulnerability of soil aggregates in relation to soil properties. Rostlinná Výroba, 48(8): 329–334.10.17221/4376-PSE
  8. BRAVO-GARZA, M. R., BRYAN, R. B., VORONEY, P. (2009): Influence of wetting and drying cycles and maize residue addition on the formation of water stable aggregates in Vertisols. Geoderma, 151(3–4): 150–156.10.1016/j.geoderma.2009.03.022
  9. BULLOCK, M. S., LARNEY, F. J., IZAURRALDE, R. C., FENG, Y. (2001): Overwinter changes in wind erodibility of clay loam soils in southern Alberta. Soil Science Society of America Journal, 65(2): 423–430.10.2136/sssaj2001.652423x
  10. BULLOCK, M. S., LARNEY, F. J., McGINN, S. M., IZAURRALDE, R. C. (1999): Freeze-drying processes and wind erodibility of a clay loam soil in southern Alberta. Canadian Journal of Soil Science, 79(1): 127–135.10.4141/S98-027
  11. CHEPIL, W. S. (1951): Properties of soil which influence wind erosion: V. Mechanical stability of structure. Soil Science, Vol. 72: 465–478.10.1097/00010694-195112000-00007
  12. CHEPIL, W. S. (1952): Improved rotary sieve for measuring state and stability of dry soil structure. Soil Science Society of America Proceedings, 16(2): 113–117.10.2136/sssaj1952.03615995001600020001x
  13. CHEPIL, W. S. (1953): Factors that influence clod structure and erodibility of soil by wind: I. Soil structure. Soil Science, 75: 473–483.10.1097/00010694-195306000-00008
  14. CHEPIL, W. S. (1954): Seasonal fluctuations in soil structure and erodibility of soil by wind. Soil Science Society of America Proceedings, 18(1): 13–16.10.2136/sssaj1954.03615995001800010004x
  15. CHEPIL, W. S. (1958): Soil conditions that influence wind erosion. Technical Bulletin, No. 1185. Washington, D.C., USA, United States Department of Agriculture.
  16. COLAZO, J. C., BUSCHIAZZO, D. E. (2010): Soil dry aggregate stability and wind erodible fraction in a semiarid environment of Argentina. Geoderma, 159(1–2): 228 236.10.1016/j.geoderma.2010.07.016
  17. DAGESSE, D. F. (2013): Freezing cycle effects on water stability of soil aggregates. Canadian Journal of Soil Science, 93(4):473–483.10.4141/cjss2012-046
  18. DeLUCA, T. H., KEENEY, D. R., McCARTY, G. W. (1992): Effect of freeze-thaw events on mineralization of soil nitrogen. Biology and Fertility of Soils, 14(2): 116–120.10.1007/BF00336260
  19. DIAZ-ZORITA, M., GROVE, J. H., PERFECT, E. (2002): Aggregation, fragmentation, and structural stability measurement. In: Encyclopedia of Soil Science (pp. 37–40). Marcel Dekker, Inc., New York, USA.
  20. EDWARDS, L. M. (2013): The effects of soil freeze–thaw on soil aggregate breakdown and concomitant sediment flow in Prince Edward Island: A review. Canadian Journal of Soil Science, 93(4): 459–472.10.4141/cjss2012-059
  21. FAN, Y., LIU, J., CAI, Q. (2008): The effects of wetting rate on aggregate stability in three soils. In: 15th ISCO Congress “Soil and Water Conservation, Climate Change and Environmental Sensitivity”, 18–23 May 2008 Budapest (p. 4). Geographical Research Institute, Hungarian Academy of Science, Budapest, Hungary.
  22. GROGAN, P., MICHELSEN, A., AMBUS, P., JONASSON, S. (2004): Freeze-thaw regime effects on carbon and nitrogen dynamics in sub-arctic heath tundra mesocosms. Soil Biology and Biochemistry, 36: 641–654.10.1016/j.soilbio.2003.12.007
  23. HACHEM, S., DUGUAY, C. R., ALLARD, M. (2012): Comparison of MODIS-derived land surface temperatures with ground surface and air temperature measurements in continuous permafrost terrain. The Cryosphere, 6: 51–69.10.5194/tc-6-51-2012
  24. HAGEN, L. J., SKIDMORE, E. L., LAYTON, J. B. (1988): Wind erosion abrasion: effects of aggregate moisture. Transactions of the ASAE, 31(3): 725–728.10.13031/2013.30774
  25. HARTMANN, R., DE BOODT, M. (1974): The influence of the moisture content, texture and organic matter on the aggregation of sandy and loamy soils. Geoderma, 11(1): 53–62.10.1016/0016-7061(74)90006-8
  26. HERSHFIELD, D. M. (1974): The frequency of freeze-thaw cycles. Journal of Applied Meteorology, 13: 348–354.10.1175/1520-0450(1974)013<;0348:TFOFTC>2.0.CO;2
  27. HINMAN, W. C., BISAL, F. (1968): Alterations of soil structure upon freezing and thawing and subsequent drying. Canadian Journal of Soil Science, 48(2): 193–197.10.4141/cjss68-023
  28. IUSS Working Group WRB (2006): World reference base for soil resources 2006. World Soil Resources Reports No. 103. FAO, Rome, Italy.
  29. KEMPER, W. D., ROSENAU, R. C. (1986): Aggregate stability and size distribution. In: Methods of Soil Analysis, Part 1. Physical and Mineralogical Methods (pp. 425–444). American Society of Agronomy, Madison, USA.10.2136/sssabookser5.1.2ed.c17
  30. KONG, B., YU, H. (2013): Estimation model of soil freeze-thaw erosion in Silingco Watershed Wetland of Northern Tibet. The Scientific World Journal, ID 636521.10.1155/2013/636521
  31. KVÆRNØ, S. H., ØYGARDEN, L. (2006): The influence of freeze–thaw cycles and soil moisture on aggregate stability of three soils in Norway. Catena, 67(3): 175–182.10.1016/j.catena.2006.03.011
  32. LEHRSCH, G. A. (1998): Freeze/thaw cycles increase near-surface aggregate stability. Soil Science, 163(1): 63–70.10.1097/00010694-199801000-00009
  33. LEHRSCH, G. A., SOJKA, R. E., CARTER, D. L., JOLLEY, P. M. (1991): Freezing effects on aggregate stability affected by texture, mineralogy, and organic matter. Soil Science Society of America Journal, 55(5): 1401–1406.10.2136/sssaj1991.03615995005500050033x
  34. LOGSDAIL, D. E., WEBBER, L. R. (1959): Effect of frost action on structure of Haldimand clay. Canadian Journal of Soil Science, 39(2): 103–106.10.4141/cjss59-014
  35. MELICK, D. R., SEPPELT, R. D. (1992): Loss of soluble carbohydrates and changes in freezing point of Antarctic bryophytes after leaching and repeated freeze-thaw cycles. Antarctic Science, 4(4): 399–404.10.1017/S0954102092000592
  36. MURRAY, R. S., GRANT, C. D. (2007): The impact of irrigation on soil structure. The National Program for Sustainable Irrigation (Land and Water Australia), Canberra, Australia.
  37. MUŽÍKOVÁ, B., STŘEDA, T., PODHRÁZSKÁ, J., TOMAN, F. (2010): Meteorological conditions during extreme wind erosion events on heavy soils. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 58(1): 115–122.
  38. MUŽÍKOVÁ, B., STŘEDA, T., STŘEDOVÁ, H. (2013): State of bare soil surface as a spring drought indicator. Contributions to Geophysics and Geodesy, 43(3): 197–207.10.2478/congeo-2013-0012
  39. NIMMO, J. R. (2005): Aggregation: Physical Aspects. In: Encyclopedia of Soils in the Environment (pp. 28–35). London, Academic Press.10.1016/B0-12-348530-4/00532-4
  40. OZTAS, T., FAYETORBAY, F. (2003): Effect of freezing and thawing processes on soil aggregate stability. Catena, 52(1): 1–8.10.1016/S0341-8162(02)00177-7
  41. PODHRÁZSKÁ, J., KUČERA, J., CHUCHMA, F., STŘEDA, T., STŘEDOVÁ, H. (2013): Effect of changes in some climatic factors on wind erosion risks – the case study of South Moravia. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 61(6): 1829–1837.10.11118/actaun201361061829
  42. POKLADNÍKOVÁ, H., TOMAN, F., STŘEDA, T. (2008): Negative impacts of snowmelting on the soil. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 56(1):143–148.
  43. SINGER, M. J., SHAINBERG, I. (2004): Mineral soil surface crusts and wind and water erosion. Earth Surface Processes and Landforms, 29(9): 1065–1075.10.1002/esp.1102
  44. SJURSEN, H., MICHELSEN, A., HOLMSTRUP, M. (2005): Effects of freeze-thaw cycles on microarthropods and nutrient availability in a sub-Arctic soil. Applied Soil Ecology, 28(1): 79–93.10.1016/j.apsoil.2004.06.003
  45. SKIDMORE, E. L., POWERS, D. H. (1982): Dry soil-aggregate stability: energy-based index. Soil Science Society of America Journal, 46: 1274–1279.10.2136/sssaj1982.03615995004600060031x
  46. SLABÁ, N. (1972): Návod pro pozorovatele meteorologických stanic ČSSR. 2. přepracované vydání. Sborníky předpisů Hydrometeorologického ústavu v Praze, Svazek 7. Praha: Hydrometeorologický ústav.
  47. SPÁČILOVÁ, B., STŘEDA, T., THONNOVÁ, P. (2014): Spatial expression of potential wind erosion threats to arable soils in the Czech Republic. Contributions to Geophysics and Geodesy, 44(3): 241–252.10.1515/congeo-2015-0004
  48. STŘEDOVÁ, H., CHUCHMA, F., STŘEDA, T. (2011): Climatic factors of soil estimated system. Bioclimate: Source and limit of social development (pp. 137–138). Topolčianky, Slovakia.
  49. ŠVEHLÍK, R. (1985): Větrná eroze půdy na jihovýchodní Moravě. Zabraňujeme škodám. Praha, SZN.
  50. TATARKO, J., WAGNER, L. E., BOYCE, C. A. (2001): Effects of overwinter processes on stability of dry soil aggregates. In: Soil Erosion Research for the 21st Century (pp. 459–462). Honolulu, ASABE.
  51. VOPRAVIL, J. [ed.] (2011): Půda a její hodnocení v ČR, díl II. Praha, VÚMOP, v.v.i.
  52. VOPRAVIL, J., JANEČEK, M., TIPPL, M. (2007): Revised soil erodibility K-factor for soils in the Czech Republic. Soil and Water Research, 2(1): 1–9.10.17221/2100-SWR
  53. WANG, E., CRUSE, R. M., CHEN, X., DAIGH, A. (2012): Effects of moisture condition and freeze/thaw cycles on surface soil aggregate size distribution and stability. Canadian Journal of Soil Science, 92(3): 529–536.10.4141/cjss2010-044
  54. WMO (2008): Guide to meteorological instruments and methods of observation. WMO, No. 8. World Meteorological Organization, Geneva.
  55. XIUQING, Z., FLERCHINGER, G. (2001): Infiltration into freezing and thawing soils under differing field treatments. Journal of Irrigation and Drainage Engineering, 127(3): 176–182.10.1061/(ASCE)0733-9437(2001)127:3(176)
  56. YODER, R. E. (1936): A direct method of aggregate analysis and a study of the physical nature of erosion losses. Journal of the American Society of Agronomy, 28: 337–351.10.2134/agronj1936.00021962002800050001x
  57. ZHOU, Y., GUO, B., WANG, S., TAO, H. (2015): An estimation method of soil wind erosion in Inner Mongolia of China based on geographic information system and remote sensing. Journal of Arid Land, 7(3): 304–317.10.1007/s40333-015-0122-0
DOI: https://doi.org/10.1515/mgr-2015-0011 | Journal eISSN: 2199-6202 | Journal ISSN: 1210-8812
Language: English
Page range: 56 - 62
Submitted on: Jul 10, 2014
Accepted on: Apr 14, 2015
Published on: Aug 21, 2015
Published by: Czech Academy of Sciences, Institute of Geonics
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2015 Hana Středová, Bronislava Spáčilová, Jana Podhrázská, Filip Chuchma, published by Czech Academy of Sciences, Institute of Geonics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.