Have a personal or library account? Click to login
Numerical Approach of a Water Flow in an Unsaturated Porous Medium by Coupling Between the Navier–Stokes and Darcy–Forchheimer Equations Cover

Numerical Approach of a Water Flow in an Unsaturated Porous Medium by Coupling Between the Navier–Stokes and Darcy–Forchheimer Equations

By: K. Hami and  I. Zeroual  
Open Access
|Jan 2018

References

  1. 1. Beavers, G.S., & Joseph, D.D. (1967). Boundary conditions at naturally permeable wall. Journal of Fluid Mechanics, 30(1), 197–207.10.1017/S0022112067001375
  2. 2. Saffman, P.G. (1971). On the boundary condition at the surface of a porous medium. Studies in Applied Mathematics, 50(2), 93–101.10.1002/sapm197150293
  3. 3. Correa, M.R., & Loula, A.F.D. (2009). A unified mixed formulation naturally coupling Stokes and Darcy flows. Computer Methods in Applied Mechanics and Engineering, 198(33-36), 2710–2722.10.1016/j.cma.2009.03.016
  4. 4. Urquiza, J.M., N’Dri, D., Garon A., & Delfour, M.C. (2008). Coupling Stokes and Darcy equations. Applied Numerical Mathematics, 58(5), 525–538.10.1016/j.apnum.2006.12.006
  5. 5. Pacquaut, G., Bruchon, J., Moulin N., & Drapier, S. (2011). Combining a level-set method and a mixed stabilized P1/P1 formulation for coupling Stokes-Darcy flows. International Journal for Numerical Methods in Fluids, 66.
  6. 6. Gatica, G.N., Oyarzúa, R., & Sayas, F.-J. (2011). Convergence of a family of Galerkin discretizations for the Stokes-Darcy coupled problem. Numerical Methods for Partial Differential Equations, 27(3), 721–748.10.1002/num.20548
  7. 7. Masud, A. (2007). A stabilized mixed finite element method for Darcy-Stokes flow. International Journal for Numerical Methods in Fluids, 54(6–8), 665–681.10.1002/fld.1508
  8. 8. Tan, H., & Pillai, K. M. (2009). Finite element implementation of stress-jump and stress-continuity conditions at porous-medium, clear-fluid interface. Computers & Fluids, 38(6), 1118–1131.10.1016/j.compfluid.2008.11.006
  9. 9. Arquis, E., & Caltagirone, J.P. (1984). Sur les conditions hydrodynamiques au voisinage d’une interface milieu _uide-milieu poreux : application à la convection naturelle. Comptes Rendus de l’Académie des Science de Paris, Série II, 299, 1–4.
  10. 10. Arquis, E., Caltagirone, J.P., & Le Breton, P. (1991). Détermination des propriétés de dispersion d’un milieu périodique à partir de l’analyse locale des transferts thermiques. Comptes Rendus de l’Académie des Science de Paris, Série II, 313, 1087–1092.
  11. 11. Vincent, S., Caltagirone, J.-P., Lubin, P., & Randrianarivelo, T.-N. (2004). An adaptative augmented lagrangian method for three-dimensional multimaterial flows. Computers & Fluids, 33, 1273–1289.10.1016/j.compfluid.2004.01.002
  12. 12. Randrianarivelo, T.N., Pianet, G., Vincent S., & Caltagirone, J.-P. (2005). Numerical modelling of solid particle motion using a new penalty method. International Journal for Numerical Methods in Fluids, 47, 1245–1251.10.1002/fld.914
  13. 13. Sarthou, A., Vincent, S., Caltagirone, J.-P., & Angot, P. (2008). Eulerian lagrangian grid coupling and penalty methods for the simulation of multiphase flows interacting with complex objects. International Journal for Numerical Methods in Fluids, 56, 1093–1099.10.1002/fld.1661
  14. 14. Puaux, G. (2011). Numerical simulation of flows at microscopic and mesoscopic scales in RTM process. PhD thesis. École nationale supérieure des mines de Paris.
  15. 15. Patankar, S.V. (1980). Numerical Heat Transfer and Fluid Flow. Hémisphère Inc.: McGraw-Hill, Washington, États-Unis.
  16. 16. Versteeg, H.K, & Malalasekera, W. (1995). Introduction to Computational Fluid Dynamics: The Finite Volume Method. Wiley, New York, États-Unis.
  17. 17. Bear, J. (1972). Dynamics of fluids in porous media. Elsevier.
DOI: https://doi.org/10.1515/lpts-2017-0041 | Journal eISSN: 2255-8896 | Journal ISSN: 0868-8257
Language: English
Page range: 54 - 64
Published on: Jan 24, 2018
Published by: Institute of Physical Energetics
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2018 K. Hami, I. Zeroual, published by Institute of Physical Energetics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.