1. Bretschneider, S. A., Weickert, J., Dorman, J. A., & Schmidt-Mende, L. (2014). Research update: physical and electrical characteristics of lead halide perovskites for solar cell applications. APL Mater., 2(5), 40701. DOI: 10.1063/1.4871795.10.1063/1.4871795
2. Burschka, J., Pellet, N., Moon, S.-J., Humphry-Baker, R., Gao, P., Nazeeruddin, M. K., & Grätzel, M. (2013). Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature, 499(7458), 316–320. DOI: 10.1038/nature12340.10.1038/12340
3. Heo, J. H., Im, S. H., Noh, J. H., Mandal, T. N., Lim, C.-S., Chang, J. A., Lee, Y. H., Kim, H., Sarkar, A., Nazeeruddin, M. K., Gratzel, M., & Il Seok, S. (2013). Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors. Nat. Photonics, 7(6), 486–491. DOI: 10.1038/nphoton.2013.80 efficient.10.1038/nphoton.2013.80
4. Liu, D., & Kelly, T. L. (2013). Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nat. Photonics, 8(2), 133–138. DOI: 10.1038/nphoton.2013.342.10.1038/nphoton.2013.342
6. Niu, G., Guo, X., & Wang, L. (2015). Review of recent progress in chemical stability of perovskite solar cells. J. Mater. Chem. A, 3(17), 8970–8980. DOI: 10.1039/c4ta04994b.10.1039/C4TA04994B
7. Ibn-Mohammed, T., Koh, S.C.L., Reaney, I.M, Acquaye, A., Schileo, G., Mustapha, K.B., & Greenough, R. (2017). Perovskite solar cells: an integrated hybrid lifecycle assessment and review in comparison with other photovoltaic technologies. Renew. Sus. Energy Rev., 80, 1321-1344. DOI: 10.1016/j.rser.2017.05.09510.1016/j.rser.2017.05.095
8. Kojima, A., Teshima, K., Shirai, Y., & Miyasaka, T. (2009). Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc., 131(17), 6050–6051. DOI: 10.1021/ja809598r.10.1021/ja809598r19366264
10. Mehmood, U., Al-Ahmed, A., Afzaal, M., Al-Sulaiman, F. A., & Daud, M. (2017). Recent progress and remaining challenges in organometallic halides based perovskite solar cells. Renew. Sustain. Energy Rev., 78, 1–14. DOI: 10.1016/j.rser.2017.04.105.10.1016/j.rser.2017.04.105
11. Mei, A., Li, X., Liu, L., Ku, Z., Liu, T., Rong, Y., Xu, M., Hu, M., Chen, J., Yang, Y., Grätzel, M., & Han, H. (2014). A hole-conductor–free, fully printable mesoscopic perovskite solar cell with high stability. Science, 345(6194), 295–298. DOI: 10.1126/science.1254763.10.1126/.1254763
12. Yang, W. S., Noh, J. H., Jeon, N. J., Kim, Y. C., Ryu, S., Seo, J., & Il Seok, S. (2015). High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science, 348(6240), 1234–1237. DOI: 10.1126/science.aaa9272.10.1126/.aaa9272
13. Eperon, G. E., Burlakov, V. M., Docampo, P., Goriely, A., & Snaith, H. J. (2014). Morphological control for high performance, solution-processed planar heterojunction perovskite solar cells. Adv. Funct. Mater., 24(1), 151–157. DOI: 10.1002/adfm.201302090.10.1002/adfm.201302090
15. Qing, J., Chandran, H. T., Cheng, Y., Liu, K., Li, H.-W., Tsang, S. W., Lo, M.-F., & Lee, C.-S. (2015). Chlorine incorporation for enhanced performance of planar perovskite solar cell based on lead acetate precursor. ACS Appl. Mater. Interfaces, 7(41), 23110–23116. DOI: 10.1021/acsami.5b06819.10.1021/acsami.5b0681926442432
16. Quilettes, D. W., Vorpahl, S. M., Stranks, S. D., Nagaoka, H., Eperon, G. E., Ziffer, M. E., Snaith, H. J., & Ginger, D. S. (2015). Impact of microstructure on local carrier lifetime in perovskite solar cells. Science, 348(6235), 683–686. DOI: 10.1126/science.aaa533310.1126/.aaa5333
18. Lee, M. M., Teuscher, J., Miyasaka, T., Murakami, T. N., & Snaith, H. J. (2012). Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science, 338(6107), 643–647. DOI: 10.1126/science.1228604 [doi].10.1126/.1228604[doi]
19. Zhao, Y., Nardes, A. M., & Zhu, K. (2014). Mesoporous perovskite solar cells: material composition, charge-carrier dynamics, and device characteristics. Faraday Discuss., 176, 301–312. DOI: 10.1039/c4fd00128a.10.1039/c4fd00128a25407110
20. Di Giacomo, F., Zardetto, V., Lucarelli, G., Cinà, L., Di Carlo, A., Creatore, M., & Brown, T. M. (2016). Mesoporous perovskie solar cells and the role of nanoscale compact layers for remarkable all-round high efficiency under both indoor and outdoor illummination. Nano Energy, 30, 460–469. DOI: 10.1016/j.nanoen.2016.10.030.10.1016/j.nanoen.2016.10.030
21. Liu, M., Johnston, M. B., & Snaith, H. J. (2013). Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature, 501, 395–398. DOI: 10.1038/nature12509.10.1038/12509
23. Seo, J., Park, S., Kim, Y. C., Jeon, N. J., Noh, J. H., Yoon, S. C., & Il Seok, S. (2014). Benefits of very thin PCBM and LiF layers for solution-processed p-i-n perovskite solar cells. Energy Environ. Sci., 7(8), 2642–2646. DOI: 10.1039/c4ee01216j.10.1039/c4ee01216j
24. Docampo, P., Ball, J. M., Darwich, M., Eperon, G. E., & Snaith, H. J. (2013). Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates. Nat. Commun., 4, 2761. DOI: 10.1038/ncomms3761.10.1038/ncomms376124217714
25. Seo, S., Park, I. J., Kim, M., Lee, S., Bae, C., Jung, H. S., Park, N. G., Kim, J. Y., & Shin, H. (2016). An ultra-thin, un-doped NiO hole transporting layer of highly efficient (16.4%) organic-inorganic hybrid perovskite solar cells. Nanoscale, 8(22), 11403–11412. DOI: 10.1039/c6nr01601d.10.1039/c6nr01601d27216291
26. Yin, X., Que, M., Xing, Y., & Que, W. (2015). High efficiency hysteresis-less inverted planar heterojunction perovskite solar cells with a solution-derived NiOx hole contact layer. J. Mater. Chem. A, 3(48), 24495–24503. DOI: 10.1039/c5ta08193a.10.1039/C5TA08193A
28. Rao, H., Ye, S., Sun, W., Yan, W., Li, Y., Peng, H., Liu, Z., Bian, Z., Li, Y.,& Huang, C. (2016). A 19.0 % efficiency achieved in CuOx-based inverted CH3NH3PbI3-xClx solar cells by an effective Cl doping method. Nano Energy, 27, 51–57. DOI: 10.1016/j.nanoen.2016.06.044.10.1016/j.nanoen.2016.06.044
29. Li, M., Shen, P., Wang, K., Guo, T., & Chen, P. (2015). Inorganic p-type contact materials for perovskite-based solar cells. J. Mater. Chem. A., 3(17), 9011–9019. DOI: 10.1039/c4ta06425a.10.1039/c4ta06425a
30. Gao, P., Gratzel, M., & Nazeeruddin, M. K. (2014). Organohalide lead perovskites for photovoltaic applications. Energy Environ. Sci., 7, 2448–2463. DOI: 10.1039/c4ee00942h.10.1039/c4ee00942h
32. Ye, S., Rao, H., Yan, W., Li, Y., Sun, W., Peng, H., Liu, Z., Bian, Z., Li, Y., & Huang, C. (2016). A strategy to simplify the preparation process of perovskite solar cells by codeposition of a hole-conductor and a perovskite layer. Adv. Mater., 28(43), 9648–9654. DOI: 10.1002/adma.201603850.10.1002/adma.20160385027622991
34. Wang, Q., Yuan, Y., & Huang, J. (2014). Large fill-factor bilayer iodine perovskite solar cells fabricated by a low-temperature solution-process. Energy Environ. Sci., 7, 359–2365. DOI: 10.1039/c4ee00233d.10.1039/c4ee00233d
36. Kaulachs, I., & Silinsh, E. (1994). Molecular triplet exciton generation via optical charge transfer states in a-metalfree phthalocyanine, studied by magnetic field effects. Latv. J. Phys. Tech. Sci., 5, 12–22, 1994.
37. Chang, C., Huang, W., & Chang, Y. (2016). Highly-efficient and long-term stable perovsite solar cells enabled by a cross-linkable n-doped cathode interfacial layer. Chem. Mater., 28, 6305–6312. DOI: 10.1021/acs.chemmater.6b02583.10.1021/acs.chemmater.6b02583
38. Kaltenbrunner, M., Adam, G., Głowacki, E. D., Drack, M., Schwödiauer, R., Leonat, L., Apaydin, D. H., Groiss, H., Scharber, M. C., White, M. S., Sariciftci, N. S., & Bauer, S. (2015). Flexible high power-per-weight perovskite solar cells with chromium oxidemetal contacts for improved stability in air. Nat. Mater., 14, 1032–1039. DOI: 10.1038/nmat4388.10.1038/nmat438826301766