Have a personal or library account? Click to login
Influence of the Preparation Method on Planar Perovskite CH3NH3PbI3-xClx Solar Cell Performance and Hysteresis Cover

Influence of the Preparation Method on Planar Perovskite CH3NH3PbI3-xClx Solar Cell Performance and Hysteresis

Open Access
|Sep 2017

References

  1. 1. Bretschneider, S. A., Weickert, J., Dorman, J. A., & Schmidt-Mende, L. (2014). Research update: physical and electrical characteristics of lead halide perovskites for solar cell applications. APL Mater., 2(5), 40701. DOI: 10.1063/1.4871795.10.1063/1.4871795
  2. 2. Burschka, J., Pellet, N., Moon, S.-J., Humphry-Baker, R., Gao, P., Nazeeruddin, M. K., & Grätzel, M. (2013). Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature, 499(7458), 316–320. DOI: 10.1038/nature12340.10.1038/12340
  3. 3. Heo, J. H., Im, S. H., Noh, J. H., Mandal, T. N., Lim, C.-S., Chang, J. A., Lee, Y. H., Kim, H., Sarkar, A., Nazeeruddin, M. K., Gratzel, M., & Il Seok, S. (2013). Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors. Nat. Photonics, 7(6), 486–491. DOI: 10.1038/nphoton.2013.80 efficient.10.1038/nphoton.2013.80
  4. 4. Liu, D., & Kelly, T. L. (2013). Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nat. Photonics, 8(2), 133–138. DOI: 10.1038/nphoton.2013.342.10.1038/nphoton.2013.342
  5. 5. Lotsch, B. V. (2014). New light on an old story: perovskites go solar. Angew. Chemie - Int. Ed., 53(3), 635–637. DOI: 10.1002/anie.201309368.10.1002/anie.20130936824353055
  6. 6. Niu, G., Guo, X., & Wang, L. (2015). Review of recent progress in chemical stability of perovskite solar cells. J. Mater. Chem. A, 3(17), 8970–8980. DOI: 10.1039/c4ta04994b.10.1039/C4TA04994B
  7. 7. Ibn-Mohammed, T., Koh, S.C.L., Reaney, I.M, Acquaye, A., Schileo, G., Mustapha, K.B., & Greenough, R. (2017). Perovskite solar cells: an integrated hybrid lifecycle assessment and review in comparison with other photovoltaic technologies. Renew. Sus. Energy Rev., 80, 1321-1344. DOI: 10.1016/j.rser.2017.05.09510.1016/j.rser.2017.05.095
  8. 8. Kojima, A., Teshima, K., Shirai, Y., & Miyasaka, T. (2009). Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc., 131(17), 6050–6051. DOI: 10.1021/ja809598r.10.1021/ja809598r19366264
  9. 9. NREL, “Efficiency Chart,” Nrel. p. 1, 2017.
  10. 10. Mehmood, U., Al-Ahmed, A., Afzaal, M., Al-Sulaiman, F. A., & Daud, M. (2017). Recent progress and remaining challenges in organometallic halides based perovskite solar cells. Renew. Sustain. Energy Rev., 78, 1–14. DOI: 10.1016/j.rser.2017.04.105.10.1016/j.rser.2017.04.105
  11. 11. Mei, A., Li, X., Liu, L., Ku, Z., Liu, T., Rong, Y., Xu, M., Hu, M., Chen, J., Yang, Y., Grätzel, M., & Han, H. (2014). A hole-conductor–free, fully printable mesoscopic perovskite solar cell with high stability. Science, 345(6194), 295–298. DOI: 10.1126/science.1254763.10.1126/.1254763
  12. 12. Yang, W. S., Noh, J. H., Jeon, N. J., Kim, Y. C., Ryu, S., Seo, J., & Il Seok, S. (2015). High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science, 348(6240), 1234–1237. DOI: 10.1126/science.aaa9272.10.1126/.aaa9272
  13. 13. Eperon, G. E., Burlakov, V. M., Docampo, P., Goriely, A., & Snaith, H. J. (2014). Morphological control for high performance, solution-processed planar heterojunction perovskite solar cells. Adv. Funct. Mater., 24(1), 151–157. DOI: 10.1002/adfm.201302090.10.1002/adfm.201302090
  14. 14. Heo, J. H., & Im, S. H. (2016). Highly reproducible, efficient hysteresis-less CH3NH3PbI 3-xClx planar hybrid solar cells without requiring heat-treatment. Nanoscale, 8(2554–2560). DOI: 10.1039/c5nr08458j.10.1039/C5NR08458J
  15. 15. Qing, J., Chandran, H. T., Cheng, Y., Liu, K., Li, H.-W., Tsang, S. W., Lo, M.-F., & Lee, C.-S. (2015). Chlorine incorporation for enhanced performance of planar perovskite solar cell based on lead acetate precursor. ACS Appl. Mater. Interfaces, 7(41), 23110–23116. DOI: 10.1021/acsami.5b06819.10.1021/acsami.5b0681926442432
  16. 16. Quilettes, D. W., Vorpahl, S. M., Stranks, S. D., Nagaoka, H., Eperon, G. E., Ziffer, M. E., Snaith, H. J., & Ginger, D. S. (2015). Impact of microstructure on local carrier lifetime in perovskite solar cells. Science, 348(6235), 683–686. DOI: 10.1126/science.aaa533310.1126/.aaa5333
  17. 17. Fan, L., Ding, Y., Luo, J., Shi, B., Yao, X., Wei, C., Zhang, D., Wang, G., Sheng, Y., Chen, Y., Hagfeldt, A., Zhao, Y., & Zhang, X. (2017). Elucidating the role of chlorine in perovskite solar cells. J. Mater. Chem. A, 5, 7423–7432. DOI: 10.1039/c7ta00973a.10.1039/C7TA00973A
  18. 18. Lee, M. M., Teuscher, J., Miyasaka, T., Murakami, T. N., & Snaith, H. J. (2012). Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science, 338(6107), 643–647. DOI: 10.1126/science.1228604 [doi].10.1126/.1228604[doi]
  19. 19. Zhao, Y., Nardes, A. M., & Zhu, K. (2014). Mesoporous perovskite solar cells: material composition, charge-carrier dynamics, and device characteristics. Faraday Discuss., 176, 301–312. DOI: 10.1039/c4fd00128a.10.1039/c4fd00128a25407110
  20. 20. Di Giacomo, F., Zardetto, V., Lucarelli, G., Cinà, L., Di Carlo, A., Creatore, M., & Brown, T. M. (2016). Mesoporous perovskie solar cells and the role of nanoscale compact layers for remarkable all-round high efficiency under both indoor and outdoor illummination. Nano Energy, 30, 460–469. DOI: 10.1016/j.nanoen.2016.10.030.10.1016/j.nanoen.2016.10.030
  21. 21. Liu, M., Johnston, M. B., & Snaith, H. J. (2013). Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature, 501, 395–398. DOI: 10.1038/nature12509.10.1038/12509
  22. 22. Tan, H., Jain, A., Voznyy, O., Lan, X., Yuan, M., Zhang, B., Zhao, Y., Fan, F., Li, P., Quan, L. N., Zhao, Y., Lu, Z., Yang, Z., Hoogland, S., & Sargent, E. H. (2017). Efficient and stable solution-processed planar perovskite solar cells via contact passivation. Science, 355, 722–726. DOI: 10.1126/science.aai908110.1126/.aai9081
  23. 23. Seo, J., Park, S., Kim, Y. C., Jeon, N. J., Noh, J. H., Yoon, S. C., & Il Seok, S. (2014). Benefits of very thin PCBM and LiF layers for solution-processed p-i-n perovskite solar cells. Energy Environ. Sci., 7(8), 2642–2646. DOI: 10.1039/c4ee01216j.10.1039/c4ee01216j
  24. 24. Docampo, P., Ball, J. M., Darwich, M., Eperon, G. E., & Snaith, H. J. (2013). Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates. Nat. Commun., 4, 2761. DOI: 10.1038/ncomms3761.10.1038/ncomms376124217714
  25. 25. Seo, S., Park, I. J., Kim, M., Lee, S., Bae, C., Jung, H. S., Park, N. G., Kim, J. Y., & Shin, H. (2016). An ultra-thin, un-doped NiO hole transporting layer of highly efficient (16.4%) organic-inorganic hybrid perovskite solar cells. Nanoscale, 8(22), 11403–11412. DOI: 10.1039/c6nr01601d.10.1039/c6nr01601d27216291
  26. 26. Yin, X., Que, M., Xing, Y., & Que, W. (2015). High efficiency hysteresis-less inverted planar heterojunction perovskite solar cells with a solution-derived NiOx hole contact layer. J. Mater. Chem. A, 3(48), 24495–24503. DOI: 10.1039/c5ta08193a.10.1039/C5TA08193A
  27. 27. Xiao, M., Gao, M., Huang, F., Pascoe, A. R., Qin, T., Cheng, B., Bach, U., & Spiccia, L. (2016). Efficient perovskite solar cells employing inorganic interlayers. ChemNanoMat, 2(3), 182–188. DOI: 10.1002/cnma.201500223.10.1002/cnma.201500223
  28. 28. Rao, H., Ye, S., Sun, W., Yan, W., Li, Y., Peng, H., Liu, Z., Bian, Z., Li, Y.,& Huang, C. (2016). A 19.0 % efficiency achieved in CuOx-based inverted CH3NH3PbI3-xClx solar cells by an effective Cl doping method. Nano Energy, 27, 51–57. DOI: 10.1016/j.nanoen.2016.06.044.10.1016/j.nanoen.2016.06.044
  29. 29. Li, M., Shen, P., Wang, K., Guo, T., & Chen, P. (2015). Inorganic p-type contact materials for perovskite-based solar cells. J. Mater. Chem. A., 3(17), 9011–9019. DOI: 10.1039/c4ta06425a.10.1039/c4ta06425a
  30. 30. Gao, P., Gratzel, M., & Nazeeruddin, M. K. (2014). Organohalide lead perovskites for photovoltaic applications. Energy Environ. Sci., 7, 2448–2463. DOI: 10.1039/c4ee00942h.10.1039/c4ee00942h
  31. 31. Xiao, Z., Bi, C., Shao, Y., Dong, Q., Wang, Q., Yuan, Y., Wang, C., Gao, Y., & Huang, J. (2014). Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers. Energy Environ. Sci., 7(8), 2619. DOI: 10.1039/c4ee01138d.10.1039/C4EE01138D
  32. 32. Ye, S., Rao, H., Yan, W., Li, Y., Sun, W., Peng, H., Liu, Z., Bian, Z., Li, Y., & Huang, C. (2016). A strategy to simplify the preparation process of perovskite solar cells by codeposition of a hole-conductor and a perovskite layer. Adv. Mater., 28(43), 9648–9654. DOI: 10.1002/adma.201603850.10.1002/adma.20160385027622991
  33. 33. Zhou, Z., Wang, Z., Zhou, Y., Pang, S., Wang, D., Xu, H., Liu, Z., Padture, N. P., & Cui, G. (2015). Methylamine-gas-induced defect-healing behavior of CH3NH3PbI3 thin films for perovskite solar cells. Angew. Chemie Int. Ed., 54(33), 9705–9709. DOI: 10.1002/anie.201504379.10.1002/anie.20150437926118666
  34. 34. Wang, Q., Yuan, Y., & Huang, J. (2014). Large fill-factor bilayer iodine perovskite solar cells fabricated by a low-temperature solution-process. Energy Environ. Sci., 7, 359–2365. DOI: 10.1039/c4ee00233d.10.1039/c4ee00233d
  35. 35. Kaulachs, I., Muzikante, I., Gerca, L., Shlihta, G., Shipkovs, P., Grehovs, V., Kalnachs, J., Roze, M., Rozite, G., & Ivanova, A. (2013). Electrodes for GaOHPc:PCBM/P3HT:PCBM bulk heterojunction solar cell. Chem. Phys., 405, 46–51. DOI: 10.1016/j.chemphys.2012.06.007.10.1016/j.chemphys.2012.06.007
  36. 36. Kaulachs, I., & Silinsh, E. (1994). Molecular triplet exciton generation via optical charge transfer states in a-metalfree phthalocyanine, studied by magnetic field effects. Latv. J. Phys. Tech. Sci., 5, 12–22, 1994.
  37. 37. Chang, C., Huang, W., & Chang, Y. (2016). Highly-efficient and long-term stable perovsite solar cells enabled by a cross-linkable n-doped cathode interfacial layer. Chem. Mater., 28, 6305–6312. DOI: 10.1021/acs.chemmater.6b02583.10.1021/acs.chemmater.6b02583
  38. 38. Kaltenbrunner, M., Adam, G., Głowacki, E. D., Drack, M., Schwödiauer, R., Leonat, L., Apaydin, D. H., Groiss, H., Scharber, M. C., White, M. S., Sariciftci, N. S., & Bauer, S. (2015). Flexible high power-per-weight perovskite solar cells with chromium oxidemetal contacts for improved stability in air. Nat. Mater., 14, 1032–1039. DOI: 10.1038/nmat4388.10.1038/nmat438826301766
DOI: https://doi.org/10.1515/lpts-2017-0027 | Journal eISSN: 2255-8896 | Journal ISSN: 0868-8257
Language: English
Page range: 58 - 68
Published on: Sep 23, 2017
Published by: Institute of Physical Energetics
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2017 A. Ivanova, A. Tokmakov, K. Lebedeva, M. Roze, I. Kaulachs, published by Institute of Physical Energetics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.