Have a personal or library account? Click to login
Low Brightness Temperature in Microwaves at Periphery of Some Solar Active Regions Cover

Low Brightness Temperature in Microwaves at Periphery of Some Solar Active Regions

Open Access
|Aug 2017

References

  1. 1. Bezrukov, D.A., Ryabov, B.I., Zalite, K., & Bajkova, A.T. (2009). Application of recovering procedures to RT-32 radio maps of the Sun. Latv. J. Phys. Tech. Sci., 6, 49-56.10.2478/v10047-009-0026-x
  2. 2. Bezrukov, D. (2013). Spectral polarimatric observations of the Sun by the VIRAC RT-32 radio telescope: First results. Baltic Astronomy, 22, 9-14.
  3. 3. Kallunki, J., Lavonen, N., Järvelä, E., & Uunila, M. (2012). A study of long-term solar activity at 37 GHz. Baltic Astronomy, 21, 255-262.10.1515/astro-2017-0384
  4. 4. Brajša, R., Vršnak, B., Ruždjak, V., Jurač, S., Pohjolainen, S., Urpo, H., & Teräsranta, H. (1992). Giant cells on the Sun revealed by low temperature microwave regions? Hvar Obs. Bull., 16, 1, 1-12.
  5. 5. Brajša, R., Ruždjak, V., Vršnak, B., Wöhl, H., Pohjolainen, S., & Urpo, H. (1999). An estimate of microwave low-brightness-temperature regions’ heights obtained measuring their rotation velocity. Solar Physics, 184, 281-296.10.1023/A:1005124022163
  6. 6. Nikulin, I.F. & Dumin, Y.V. (2016). Coronal partings. Advances in Space Research, 57(3), 904-911. 10.1016/j.asr.2015.11.020
  7. 7. Brooks, D., Ugarte-Urra, I., & Warren, H.P. (2015). Full-Sun observations for identifying the sources of the slow solar wind. Nature Communications, 6, 5947. 10.1038/ncomms6947435410625562705
  8. 8. Poletto, G. (2013). Sources of solar wind over the solar activity cycle. Journal of Advanced Research, 4, 215-220.10.1016/j.jare.2012.08.007429503625685421
  9. 9. Ryabov, B.I., Gary, D.E., Peterova, N.G., Shibasaki, K., & Topchilo, N.A. (2015). Reduced coronal emission above large isolated sunspots. Solar Physics, 290, 21-35. DOI: 10.1007/s11207-014-0634-3
  10. 10. Ryabov, B.I. & Shibasaki, K. (2016). Depressed emission between magnetic arcades near a sunspot. Baltic Astronomy, 25, 225-235.10.1515/astro-2017-0124
  11. 11. Schatten K. H., Wilcox J. M., & Ness N. F. (1969). A model of interplanetary and coronal magnetic fields. Solar Physics, 6, 442-455.10.1007/BF00146478
  12. 12. Schrijver, C. J., DeRosa, M. L., & Title, A. M. (2010). Magnetic field topology and the thermal structure of the corona over solar active regions. ApJ, 719, 1083-1096.10.1088/0004-637X/719/2/1083
  13. 13. Bezrukov, D. (2013). Spectral polarimetric observations of the Sun by the VIRAC RT-32 radio telescope: First results. Baltic Astronomy, 22, 9-14.10.1515/astro-2017-0142
  14. 14. Starck, J.-L. & Murtagh, F. (1994). Image restoration with noise suppression using the wavelet transform. Astron. Astrophys., 288, 342-348.
  15. 15. Starck, J.-L., Murtagh, F., & Bertero, M. (2011). Starlet transform in astronomical data processing. In O. Scherzer (Ed.), Handbook of Mathematical Methods in Imaging (pp. 1489-1531). Springer.10.1007/978-0-387-92920-0_34
  16. 16. Stenborg, G. & Cobelli, P.J. (2003). A wavelet packets equalization technique to reveal the multiple spatial-scale nature of coronal structures. A&A, 398, 1185-1193.10.1051/0004-6361:20021687
  17. 17. Wedemeyer, S., Bastian, T., Brajša, R., Hudson, H., Fleishman, G., Loukitcheva, M., Barta, M. (2016). Solar science with the Atacama large millimeter/submillimeter array-a new view of our Sun. Space Sci. Rev., 200, 1-73.10.1007/s11214-015-0229-9
  18. 18. Brosius, J.W. & White, S.M. (2004). Close association of an extreme-ultraviolet sunspot plume depressions in the sunspot radio emission. Ap. J., 601, 546-558.10.1086/380394
  19. 19. Koshiishi, H. (2003). Restoration of solar images by the Steer algorithm. Astron. Astrophys. 412, 893-896.10.1051/0004-6361:20031514
  20. 20. Landi, E. & Chiuderi Drago, F. (2008). The quiet-Sun differential emission measure from radio and UV measurements. Ap. J., 675, 1629-1636.10.1086/527285
  21. 21. Borovik, V.N., Kurbanov, M.S., & Makarov, V.V. (1992). Distribution of radio brightness of the quiet Sun in the 2-32 cm range. Astron. J., 69, 1288-1302.
  22. 22. Slemzin V., Harra L., Urnov A., Kuzin S., Goryaev F., & Bergman D. (2013). Signatures of the slow solar wind streams from active regions in the inner corona. Solar Physics, 286, 157-184.10.1007/s11207-012-0004-y
  23. 23. Bezrukov, D., Ryabov, B., Peterova, N., & Topchilo, N. (2011). Sharp changes in the ordinary mode microwave emission from a stable sunspot: Model analysis. Latv. J. Phys. Tech. Sci., 48(2), 56-69.10.2478/v10047-011-0016-7
  24. 24. Liewer, P.C., Neugebauer, M., & Zurbuchen, T. (2004). Characteristics of active-region sources of solar wind near solar maximum. Solar Physics, 223, 209-229.10.1007/s11207-004-1105-z
  25. 25. Baker, D., van Driel-Gesztelyi, L., Mandrini, C. H., Démoulin, P., & Murray, M. J. (2009). Magnetic reconnection along quasi-separatrix layers as a driver of ubiquitous active region outflows. Ap. J., 705, 926-935.10.1088/0004-637X/705/1/926
DOI: https://doi.org/10.1515/lpts-2017-0021 | Journal eISSN: 2255-8896 | Journal ISSN: 0868-8257
Language: English
Page range: 58 - 67
Published on: Aug 1, 2017
Published by: Institute of Physical Energetics
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2017 B. I. Ryabov, D. A. Bezrukov, J. Kallunki, published by Institute of Physical Energetics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.