4. Warren, A.W., Guo, Y.B., & Weaver, M.L. (2006). The influence of machining induced residual stress and phase transformation on the measurement of subsurface mechanical behavior using nanoindentation. Surf. Coat. Tech., 200, 3459–3467.10.1016/j.surfcoat.2004.12.028
5. Michel, J.P., Ivanovska, I.L., Gibbons, M.M., Klug, W.S., Knobler, C.M., Wuite, G.J.L., & Schmid, C.F. (2006). Nanoindentation studies of full and empty viral capsids and the effects of capsid protein mutations on elasticity and strength. Proc. Natl. Acad. Sci. USA, 103, 6184–6189.10.1073/pnas.0601744103
6. Sangwal, K. (2000). On the reverse indentation size effect and microhardness measurement of solids. Mater. Chem. Phys., 63, 145–152.10.1016/S0254-0584(99)00216-3
8. Saha, R., & Nix, W.D. (2002). Effects of the substrate on the determination of thin film mechanical properties by nanoindentation. Acta Mater., 50, 23–38.10.1016/S1359-6454(01)00328-7
9. Manika, I., & Maniks, J. (2008). Effect of substrate hardness and film structure on indentation depth criteria for film hardness testing. J. Phys. D. Appl. Phys., 41, 074010.10.1088/0022-3727/41/7/074010
16. Oliver, W., & Pharr, G. (2004). Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J. Mater. Res., 19, 3–20.10.1557/jmr.2004.19.1.3
17. Zarudi, I., Zhang, L.C., Cheong, W.C.D., & Yu, T.X. (2005). The difference of phase distributions in silicon after indentation with Berkovich and spherical indenters. Acta Mater., 53, 4795–4800.10.1016/j.actamat.2005.06.030
20. Maniks, J., Mitin, V., Kanders, U., Kovalenko, V., Nazarovs, P., Baitimirova, M., Meija, R., Zabels, R., Kundzins, K., & Erts, D. (2015). Deformation behavior and interfacial sliding in carbon/copper nanocomposite films deposited by high power DC magnetron sputtering. Surf. Coat. Tech., 276, 279–285.10.1016/j.surfcoat.2015.07.004