Have a personal or library account? Click to login
The Study of Adsorption Process of Pb Ions Using Well-Aligned Arrays of ZnO Nanotubes as a Sorbent Cover

The Study of Adsorption Process of Pb Ions Using Well-Aligned Arrays of ZnO Nanotubes as a Sorbent

Open Access
|Mar 2017

References

  1. 1. Amin, M.T., Alazba, A.A., & Manzoor, U. (2014). A review of removal of pollutants from water/wastewater using different types of nanomaterials, Adv. Mater.Sci. Eng., 1–24.DOI: http://dx.doi.org/10.1155/2014/825910.10.1155/2014/825910
  2. 2. Singh, S., Barick, K.C., & Bahadur, D. (2013). Functional oxide nanomaterials and nanocomposites for the removal of heavy metals and dyes. Nanomater. Nanotechnol, 3(20). DOI 10.5772/57237.10.5772/57237
  3. 3. Rahman, M.M., Bahadar, K., Hadi, S., & Marwani, M. (2014). Low dimensional Ni-ZnO nanoparticles as marker of toxic lead ions for environmental remediation, J.Ind. Eng. Chem. 20(3), 1071–1078. DOI: 10.1016/j.jiec.2013.06.044.10.1016/j.jiec.2013.06.044
  4. 4. Zolfaghari, G., Esmaili-Sari, A., Anbia, M., Younesi, H., Ghasemian, M.B. (2013). A zinc oxide-coated nanoporous carbon adsorbent for lead removal from water: optimization, equilibrium modeling, and kinetics studies. Int. J. Environ. Sci. Technol., 10, 325–340. DOI: 10.1007/s13762-012-0135-6.10.1007/s13762-012-0135-6
  5. 5. Srivastava, S., & Srivastav, Y. (2013). Removal of arsenic from waste water by using ZnO nano-materials. J.Mater. Sci.Eng. B, 3(8), 483–492.10.17265/2161-6221/2013.08.001
  6. 6. Khan, S.B., Rahman, M.M., Marwani, H.M., Asiri A.M., & Alamry, K.A. (2013). An assessment of zinc oxide nanosheets as a selective adsorbent for cadmium. Nanosc. Res. Lett. 8, 377. DOI: 10.1186/1556-276X-8-377.10.1186/1556-276X-8-377384873324011201
  7. 7. Rahman, M.M., Khan, S.B. Asiri, A.M., Marwani, H.M., & Qusti, A.H. (2013). Selective detection of toxic Pb (II) ions based on wet-chemically prepared nanosheets integrated CuO–ZnO nanocomposites, Comp. B, 54, 215–223. DOI:http://dx.doi.org/10.1016/j.compositesb.2013.05.018.10.1016/j.compositesb.2013.05.018
  8. 8. Kannadasan, N., Shanmugam, N., Sathishkumar, K., Cholan, S., Ponnguzhali, R., & Viruthagiri, G. (2015). Optical behavior and sensor activity of Pb ions incorporated ZnO nanocrystals. Spectrochim. Acta A: Molecul. Biomolecul. Spectrosc. 143, 179–186. DOI: http://dx.doi.org/10.1016/j.saa.2015.01.113.10.1016/j.saa.2015.01.11325727294
  9. 9. Erdem, M., Ucar, S. Karagöz, S., & Tay, T. (2013). Removal of Lead (II) Ions from Aqueous Solutions onto Activated Carbon Derived from Waste Biomass. Sci.World. J., 7. DOI: http://dx.doi.org/10.1155/2013/146092.10.1155/2013/146092370372323853528
  10. 10. Xianbiao, W., Weiping, C., Shengwen, L., Guozhong, W., Zhikun, W., & Huijun Z. (2013). ZnO hollow microspheres with exposed porous nanosheets surface: Structurally enhanced adsorption towards heavy metal ions. Colloids and Surfaces A: Physicochem. Eng. Aspects, 422, 199–205. DOI:http://dx.doi.org/10.1016/j.colsurfa.2013.01.031.10.1016/j.colsurfa.2013.01.031
  11. 11. Wang, X., Guo, Y., Yang, L., Han, M., & Zhao, J. (2012). Nanomaterials as sorbents to remove heavy metal ions in wastewater treatment. J. Environ. Anal. Toxicol. 2(7), 154. DOI:10.4172/2161-0525.1000154.10.4172/2161-0525.1000154
  12. 12. Yeong, H.K., Dandu, K.V.R., and Jae, S.Y. (2013). Electrochemical synthesis of ZnO branched submicrorods on carbon fibers and their feasibility for environmental applications. Nanoscale Research Letters, 8, 262.
  13. 13. Krasovska, M., Gerbreders, V., Paskevics, V. Ogurcovs, A., & Mihailova, I. (2015). Obtaining a well-aligned ZnO nanotube array using the hydrothermal growth method. Latvian J. Phys.Techn.Sci. 5(52), 28–40. DOI: 10.1515/lpts-2015-0026.10.1515/lpts-2015-0026
  14. 14. Chae, K., Zhang, Q., Kim, J.S, Jeong, Y., & Cao, G. (2010). Low-temperature solution growth of ZnO nanotube arrays. Beilstein J.Nanotechnol, 1, 128–134. DOI:10.3762/bjnano.1.15.10.3762/bjnano.1.15304591421977402
  15. 15. Roza, L., Rahman, M.Y.A., Umar, A.A., & Salleh, M.M. (2015). Direct growth of oriented ZnO nanotubes by self-selective etching at lower temperature for photo-electro-chemical (PEC) solar cell application. J. All.Comp., 618, 153–158. DOI:10.1016/j.jallcom.2014.08.113.10.1016/j.jallcom.2014.08.113
  16. 16. Song, Y., Xi, J., Xu S., Yang, R., Gao, Z., Hu, C., & Wang, Z. (2009). Growth of ZnO nanotube arrays and nanotube based piezoelectricnanogenerators. J. Mater. Chem., 19(48), 9260–9264. DOI: 10.1039/B917525C.10.1039/b917525c
  17. 17. Hongqiang, W., Guanghai, L., Lichao, J., Guozhong, W., & Chunjuan, T. (2008). Controllable preferential-etching synthesis and photocatalytic activity of porous ZnO nanotubes. J. Phys. Chem. C, 112(31), 11738–11743. DOI: 10.1021/jp803059k.10.1021/jp803059k
  18. 18. Yap, Y.K. (2009). Growth mechanisms of vertically-aligned carbon, boron nitride, and zinc oxide nanotubes. AIP Conf. Proc. 1150, 126. DOI: 10.1063/1.3192226.10.1063/1.3192226
  19. 19. Alfind, A., Frit, P., Deepalakshmi, K., Prithivikumaran, N., & Jeyakumaran, N. (2014). The effect of annealing time on lead oxide thin films coated on indium tin oxide substrate. Int. J. ChemTech Res., 6(13), 5347–5352.
DOI: https://doi.org/10.1515/lpts-2017-0005 | Journal eISSN: 2255-8896 | Journal ISSN: 0868-8257
Language: English
Page range: 41 - 50
Published on: Mar 30, 2017
Published by: Institute of Physical Energetics
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2017 M. Krasovska, V. Gerbreders, E. Tamanis, S. Gerbreders, A. Bulanovs, published by Institute of Physical Energetics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.