Have a personal or library account? Click to login

The Development of Nanotechnologies and Advanced Materials Industry in Science and Entrepreneurship: Socioeconomic and Technical Indicators. A Case Study of Latvia (Part Two)

Open Access
|Nov 2016

References

  1. 1. Realo, A., & Dobewall, H. (2011). Does life satisfaction change with age? A comparison of Estonia, Finland, Latvia, and Sweden. Journal of Research in Personality, 45 (3), 297–308. DOI: 10.1016/j.jrp.2011.03.00410.1016/j.jrp.2011.03.004
  2. 2. Veenhoven, R. (n.d.). Happiness in Latvia (LV), World Database of Happiness, Erasmus University Rotterdam. The Netherlands. Retrieved 14 January 2016, from http://worlddatabaseofhappiness.eur.nl
  3. 3. Better life index. (n.d.). OECD. Retrieved 6 January 2016, from http://www.oecdbetterlifeindex.org/topics/life-satisfaction/
  4. 4. Lonska, J. (2013). Comparative analysis of subjective well-being of Latvia’s inhabitants in the context of economic development of the Baltic States. Latgale National Economy Research, 1 (5), 148–166. DOI: 10.17770/lner2013vol1.5.1157.10.17770/lner2013vol1.5.1157
  5. 5. Living standard statistics – median equivalised disposable income. (n.d.). Eurostat. Retrieved 6 January 2016, from http://ec.europa.eu/eurostat/statistics-explained/index.php/Living_standard_statistics_-_median_equivalised_disposable_income
  6. 6. Gini coefficient of equivalised disposable income. (n.d.). Eurostat. Retrieved 11 January 2016, from http://ec.europa.eu/eurostat/tgm/table.do?tab=table&language=en&pcode=tessi190
  7. 7. World Rankings – Human Development Index. (n.d.). World Data Atlas. Retrieved 10 November 2015, from http://knoema.com/atlas/topics/World-Rankings/World-Rankings/Human-Development-Index
  8. 8. GNI per capita, Atlas method (current US$). (n.d.). The World Bank. Retrieved 10 November 2015, from http://data.worldbank.org/indicator/NY.GNP.PCAP.CD/countries?order=wbapi_data_value_2014%20wbapi_data_value%20wbapi_data_value-last&sort=asc&display=default
  9. 9. Geipele, I., Geipele, S., Staube, T., Ciemleja, G., Zeltins, N., & Ekmanis, J. (2016). The development of nanotechnologies and advanced materials industry in science and entrepreneurship: Socioeconomic and technical indicators. A case study of Latvia (Part One). Latvian Journal of Physics and Technical Sciences (53), 4, 3–13, DOI: 10.1515/lpts-2016-0023.10.1515/lpts-2016-0023
  10. 10. Employment (main characteristics and rates) – Annual averages. (n.d.). Eurostat. Retrieved 19 December 2015, from http://appsso.eurostat.ec.europa.eu/nui/submitViewTableAction.do
  11. 11. Economically active population by education level and gender on a quarterly basis. (n.d.). Central Statistical Bureau of Latvia. Retrieved 10 November 2015, from http://data.csb.gov.lv/pxweb/lv/Sociala/Sociala__isterm__nodarb/NB0030c.px/table/tableViewLayout1/?rxid=d543db7b-f122-4e1f-aced-7a7707fd86e7 (in Latvian)
  12. 12. Researchers in R&D (per million people). (n.d.). The World Bank. Retrieved 5 January 2016, from http://data.worldbank.org/indicator/SP.POP.SCIE.RD.P6?order=wbapi_data_value_2013+wbapi_data_value&sort=asc
  13. 13. Unemployment rate by sex and age groups – Annual average, %. (n.d.). Eurostat. Retrieved 10 January 2016, from http://appsso.eurostat.ec.europa.eu/nui/show.do?wai=true&dataset=une_rt_a
  14. 14. The Number of employed and unemployed aged 15–74 years by gender on a monthly basis, seasonally adjusted data. (n.d.). Central Statistical Bureau of Latvia. Retrieved 10 January 2016, from http://data.csb.gov.lv/pxweb/lv/Sociala/Sociala__isterm__nodarb/NB00010m.px/table/tableViewLayout1/?rxid=d543db7b-f122-4e1f-aced-7a7707fd86e7 (in Latvian).
  15. 15. Latvia – Population. (n.d.). Country Economy. Retrieved 13 November 2015, from http://countryeconomy.com/demography/population/latvia
  16. 16. Bainbridge, W. S. (Ed.). (2007). Nanotechnology: Societal implications: I: Maximising benefits for humanity; II: Individual perspectives. Springer Science & Business Media. Netherlands.
  17. 17. The unemployed by sex and educational level on a quarterly basis (n.d.). Central Statistical Bureau of Latvia. Retrieved 10 January 2016, from http://data.csb.gov.lv/pxweb/lv/Sociala/Sociala__isterm__nodarb/NB0200c.px/table/tableViewLayout1/?rxid=d543db7b-f122-4e1f-aced-7a7707fd86e7 (in Latvian).
  18. 18. Statistical portrait of unemployed person. (2015). State Employment Agency. Retrieved 10 January 2016, from http://nva.gov.lv/index.php?cid=6&mid=494&txt=495&t=stat (in Latvian).
  19. 19. About development of smart specialisation strategy (2013). Ministry of Education and Science of Latvia. Retrieved 13 January 2016, from http://tap.mk.gov.lv/mk/tap/?pid=40291636 (in Latvian).
  20. 20. File:Expenditure on social protection, 2002–12 (% of GDP) YB15.png. Eurostat Statistics Explained. Retrieved 13 January 2016, from http://ec.europa.eu/eurostat/statistics-explained/index.php/File:Expenditure_on_social_protection,_2002%E2%80%9312_%28%25_of_GDP%29_YB15.png
  21. 21. Average monthly salary by activity types / per month (EUR). (n.d.). Central Statistical Bureau of Latvia. Retrieved 14 January 2016, from http://data.csb.gov.lv/pxweb/lv/Sociala/Sociala__isterm__dsamaksa/DS0040m_euro.px/table/tableViewLayout1/?rxid=89fa53c2-5ff7-456f-aae4-c4274cf3b2aa (in Latvian).
  22. 22. Salary survey in Germany, Lithuania and Poland. (n.d.). Salary Explorer 2015. Retrieved 14 January 2016, from http://www.salaryexplorer.com/salary-survey.php?loc=81&loctype=1
  23. 23. Nanotechnology Careers. (n.d.). National Nanotechnology Infrastructure Network. Retrieved 9 January 2016, from http://www.nnin.org/news-events/spotlights/nanotechnology-careers
  24. 24. Science, Technology Development and Innovation Guidelines for 2014–2020. Riga, 2013, Regulations of the Cabinet of Ministers No. 685 as of 28 December 2013. Retrieved 5 January 2016, from https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&ved=0CCwQFjACahUKEwjKz-6H8JnIAhXIjSwKHR6JDDo&url=http%3A%2F%2Fwww.innovativelatvia.lv%2Ffiles%2Finov%2Fcontent%2FZinatnes_tehnologijas_attistibas_un_inovacijas_pamatnostadnes_2014.%2520%25E2%2580%2593%25202020.gadam_.doc&usg=AFQjCNHBPccjrOxlMiOlbZKAYbPQt-i4rA&sig2=ck17B0cnEsUJlhtzYGWG7g&cad=rja (in Latvian)
  25. 25. Nanotechnology patents in EPO (Patent). (n.d.). StatNano. Retrieved 15 December 2015, from http://statnano.com/report/s95
  26. 26. Nanotechnology patents in USPTO (Patent). (n.d.). StatNano. Retrieved 15 December 2015, from http://statnano.com/report/s89
  27. 27. Nanotechnology patents in German patent office (DPMA) (Patent). (n.d.). StatNano. Retrieved 15 December 2015, from http://statnano.com/report/s97
  28. 28. Nanotechnology published patent applications in EPO (Patent). (n.d.). StatNano. Retrieved 15 December 2015, from http://statnano.com/report/s96
  29. 29. Nanotechnology published patent applications in USPTO (Patent). (n.d.). StatNano. Retrieved 15 December 2015, from http://statnano.com/report/s78
  30. 30. Nanotechnology published patent applications in German patent office (DPMA) (Patent). (n.d.). StatNano. Retrieved 15 December 2015, from http://statnano.com/report/s98
  31. 31. Ratio of nanotechnology patents to nano-articles (Patents per 100 articles). (n.d.). Stat-Nano. Retrieved 20 December 2015, from http://statnano.com/report/s88
  32. 32. Project BIRTI Science, Technology and Innovation Strategy for Smart Specialisation for 2014–2020. Riga, 2013. Association “Baltic Institute of Research, Technology and Innovation” (BIRTI). Retrieved 14 January 2016, from https://www.google.lv/?gws_rd=ssl#q=Projekts+BIRTI+Zin%C4%81tnes%2C+tehnolo%C4%A3iju+un+inov%C4%81cijas+strat%C4%93%C4%A3ija+lietprat%C4%ABgai+specializ%C4%81cijai+2014.-2020.gadam (in Latvian)
  33. 33. Staube, T., Ciemleja, G., & Geipele, I. (2014). The origins of nanotechnology in Latvia. Advanced Materials Research, 1025–1026, 1083–1087. DOI: 10.4028/www.scientific.net/AMR.1025-1026.1083.10.4028/www.scientific.net/AMR.1025-1026.1083
  34. 34. Ekmanis, J., Gavars, V., Mikelsons, K., Tomsons, E., & Zeltins, N. (2010). Development of nuclear energetics in Latvia. In the 21st World Energy Congress, 12–16 September 2010 (16 pp.). Montreal, Canada: World Energy Council. Retrieved from http://www.indiaenergycongress.in/montreal/library/pdf/18.pdf
  35. 35. NanoTechEnergy. (n.d.). Association “Baltic Institute of Research, Technology and Innovation” (BIRTI). Retrieved 20 January 2016, from http://www.birti.eu/en/what-we-do/item/81-nanotechenergy
  36. 36. Ventspils High Technology Park (2012). Strategy of Space Technology and Services Cluster 2012-2015. Retrieved 20 January 2016, from http://www.vatp.lv/ (in Latvian)
  37. 37. Cluster Project. (n.d.). Association of Mechanical Engineering and Metalworking Industries. Retrieved 24 January 2016, from http://www.masoc.lv/aktivitates/projekti/klastera-projekts (in Latvian).
  38. 38. Thangavel, S., Thangavel, S., Raghavan, N., Krishnamoorthy, K., & Venugopal, G. (2016). Visible-light driven photocatalytic degradation of methylene-violet by rGO/Fe3O4/ZnO ternary nanohybrid structures. Journal of Alloys and Compounds, 665, 107–112. DOI: 10.1016/j.jallcom.2015.12.19210.1016/j.jallcom.2015.12.192
  39. 39. Badran, H. A., Ajeel, K. I., & Lazim, H. G. (2016). Effect of nano particle sizes on the third-order optical non-linearities and nanostructure of copolymer P3HT:PCBM thin film for organic photovoltaics. Materials Research Bulletin, 76, 422–430. DOI: 10.1016/j.materresbull.2016.01.00510.1016/j.materresbull.2016.01.005
  40. 40. Stodola, P., Jamrichova, Z., & Stodola, J. (2012). Modelling of erosion effects on coatings of military vehicle components. Transactions of FAMENA, 36 (3), 33–44.
  41. 41. Wolden, C. A., Abbas, A., Li, J., Diercks, D. R., Meysing, D. M., Ohno, T. R., et al. (2016). The roles of ZnTe buffer layers on CdTe solar cell performance. Solar Energy Materials and Solar Cells, 147, 203–210. DOI: 10.1016/j.solmat.2015.12.019.10.1016/j.solmat.2015.12.019
  42. 42. Zhang, X., Tang, Z., Hu, D., Meng, D., & Jia, S. (2016). Nanoscale p–n junctions based on p-type ZnSe nanowires and their optoelectronic applications. Materials Letters, 168, 121–124. DOI: 10.1016/j.matlet.2016.01.044.10.1016/j.matlet.2016.01.044
  43. 43. Martínez, I. A., Roldán, É., Dinis, L., Petrov, D., Parrondo, J. M. R., & Rica, R. A. (2015). Brownian Carnot engine. Nature Physics, 12 (1), 67–70. DOI: 10.1038/nphys3518.10.1038/nphys3518490735327330541
  44. 44. Yardimci, N.T., & Jarrahi, M. (2015). 3.8 mW terahertz radiation generation through plasmonic nano-antenna arrays. In 2015 IEEE Int. Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 19–24 July 2015 (pp. 2113–2114). Vancouver, Canada: IEEE. DOI: 10.1109/APS.2015.7305446.10.1109/APS.2015.7305446
DOI: https://doi.org/10.1515/lpts-2016-0034 | Journal eISSN: 2255-8896 | Journal ISSN: 0868-8257
Language: English
Page range: 31 - 42
Published on: Nov 19, 2016
Published by: Institute of Physical Energetics
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2016 I. Geipele, S. Geipele, T. Staube, G. Ciemleja, N. Zeltins, published by Institute of Physical Energetics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.