Have a personal or library account? Click to login
Interleaved DC-DC Converter with Discrete Duty Cycle and Open Loop Control Cover

Interleaved DC-DC Converter with Discrete Duty Cycle and Open Loop Control

By: K. Kroics and  A. Sokolovs  
Open Access
|Sep 2016

References

  1. 1. Wong, P.-L., Xu, P., Yang, B., and Lee, F.C. (2001). Performance improvements of interleaving VRMs with coupling inductors, IEEE Transactions on Power Electronics 16 (4), 499–507.10.1109/63.931059
  2. 2. Panov, Y., and Jovanovic, M.M. (2000). Design considerations for 12-V/1.5-V, 50-A voltage regulator modules. In Proceedings of Applied Power Electronics Conference and Exposition (pp. 39–46).
  3. 3. Kroics, K., Sirmelis, U., Grigans, L., and Brazis, V. (2015). Digitally controlled 4-phase interleaved DC-DC converter with coupled inductors for storage application in microgrid. In Proceedings of 9th International Conference Compatibility and Power Electronics (pp. 504–509).10.1109/CPE.2015.7231127
  4. 4. Kroics, K. (2015). Bi-directional two level 6-phase DC-DC converter for energy storage application. In Proceedings of Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management (PCIM Europe) (pp. 1–8).
  5. 5. Shen, J., Rigbers, K., and De Doncker, R.W. (2010). A novel phase-interleaving algorithm for multiterminal systems. IEEE Transactions on Power Electronics 25 (3), 741–750.10.1109/TPEL.2009.2034006
  6. 6. Shrud, A., Bonsbaine, A., Ashur A.S., Thorn, R., and Benmusa, T. (2009). Modeling and simulation of automotive interleaved buck converter. In Universities Power Engineering Conference (UPEC) (pp. 1–6).
  7. 7. Jen, C., Li, J., and Sullivan, R. (2003). Automotive application of multi-phase coupled-inductor DC-DC converter. In IEEE Industry Applications Conference (pp. 1524–1529).
  8. 8. Hirakawa, M., Watanabe, Y., Nagano, M., Andoh, K., Nakatomi, S., Hashino, S., and Shimizu, T. (2010). High power DC/DC converter using extreme close-coupled inductors aimed for electric vehicles. In Power Electronics Conference IPEC 2010 (pp. 2941–2948), Singapore.10.1109/IPEC.2010.5542015
  9. 9. Qahouq, A. (2009). N-phase efficiency-based current sensing auto-tuning controller. In Proceedings of Appl. Power Electron. Conf. (APEC) (pp. 274–279).10.1109/APEC.2009.4802668
  10. 10. Min, B.S., Park N.J., and Hyun, D.-S. (2007). A novel current sharing technique for interleaved boost converter. Proceedings of Power Electronics Specialist Conference (PESC) (pp. 2658–2663).10.1109/PESC.2007.4342437
  11. 11. Zhou, X., Xu P., and Lee, F. C. A novel current-sharing control technique for low-voltage high-current voltage regulator module applications. IEEE Transactions on Power Electronics 15 (6), 1153–1162.10.1109/63.892830
  12. 12. Nandankar, P., and Aware, M.V. (2012). High efficiency discontinuous mode interleaved multiphase bidirectional dc-dc converter. In Power Electronics, Proceedings of Drives and Energy Systems conference (PEDES) (pp. 16–19).10.1109/PEDES.2012.6484357
  13. 13. Zakis, J., Vinnikov, D., Roasto, I., and Ribickis, L. (2011). Quasi-Z-source inverter based bi-directional DC/DC converter: Analysis of experimental results. In Proceedings of Compatibility and Power Electronics Conference (pp. 394–399).10.1109/CPE.2011.5942267
  14. 14. Liqin, N., Patterson, D.J., and Hudgins, J.L. (2012). High power current sensorless bi-directional 16-phase interleaved DC-DC converter for hybrid vehicle application. IEEE Transactions on Power Electronics 27 (3), 1141–1151.
  15. 15. Garcia, O., Zumel, P., Castro, A., Cobos, J.A., and Uceda, J. (2004). An automotive 16 phases DC-DC converter. In Proceedings of Power Electronics Specialists Conference (pp. 350–355).10.1109/PESC.2004.1355769
  16. 16. Vazquez, A., Rodriguez, A., Martin, K., Arias, M., and Hernando, M.M. (2013) Inductor optimization for multiphase interleaved synchronous bidirectional boost converter working in discontinuous conduction mode with zero voltage switching. In Proceedings of Energy Conversion Congress and Exposition (ECCE) (pp. 4977–4984).10.1109/ECCE.2013.6647372
  17. 17. Zakis, J., Vinnikov, D., and Roasto, I. (2010). Soft-switching capability analysis of a qZSI-based DC/DC converter. In Proceedings of 12th Biennial Baltics Electronics Conference (pp. 301–304).10.1109/BEC.2010.5630017
  18. 18. Shuqiu, G., Ming, Y., Xiying, D., and Bin, H. (2008). Research of interleaved three-phase bidirectional DC/DC converter based on control type soft switching. In Proceedings of International Conference on Electrical Machines and Systems (pp. 1738–1741).
  19. 19. Grbovic, P.J. (2013). Closed form analysis of N-cell interleaved two-level DC-DC converters: The DC bus capacitor current stress. In Proceedings of the ECCE Asia Downunder (pp. 122–129).10.1109/ECCE-Asia.2013.6579084
DOI: https://doi.org/10.1515/lpts-2016-0024 | Journal eISSN: 2255-8896 | Journal ISSN: 0868-8257
Language: English
Page range: 14 - 21
Published on: Sep 24, 2016
Published by: Institute of Physical Energetics
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2016 K. Kroics, A. Sokolovs, published by Institute of Physical Energetics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.