Have a personal or library account? Click to login
Theoretical and Experimental Investigations of Cylindrical Air-Heating Solar Collector Cover

Theoretical and Experimental Investigations of Cylindrical Air-Heating Solar Collector

By: I. Pelece and  P. Shipkovs  
Open Access
|Jul 2016

References

  1. 1. Abdulhadi, M.. and Ghorayeb, F. (2006). A self-tractable solar collector. International Journal of Sustainable Energy, 25(2), 63–78.10.1080/14786450600594939
  2. 2. Ahwide, F., Spena, A., and El-Kafrawy, A. (2013). Correlation for the average daily diffuse fraction with clearness index and estimation of beam solar radiation and possible sunshine hours fraction in Sabha, Ghdames and Tripoli – Libya. APCBEE Procedia, 5, 208–220.10.1016/j.apcbee.2013.05.037
  3. 3. Andersen, E. et al. (2015). Measurements of the angular distribution of diffuse irradiance. Energy Procedia, 70, 729–736.10.1016/j.egypro.2015.02.182
  4. 4. http://ssd.jpl.nasa.gov/horizons.cgi.
  5. 5. ISO 9488:1999(E/F) 3.24.
  6. 6. Chikh, M., Mahrane, A., and Haddadi, M. (2012). Modeling the diffuse part of the global solar radiation in Algeria. Energy Procedia, 18, 1068–1075.10.1016/j.egypro.2012.05.121
  7. 7. Chong, K.K., and Wong, C.W. (2009). General formula for on-axis sun-tracking system and its application in improving tracking accuracy of solar collector. Solar Energy, 83, 298–305.10.1016/j.solener.2008.08.003
  8. 8. Hobbi, A., and Siddiqui, K. (2009). Optimal design of a forced circulation solar water heating system for a residental unit in cold climate using TRNSYS. Solar Energy, 83, 700–714.10.1016/j.solener.2008.10.018
  9. 9. Young, A.T. (1994). Air mass and refraction. Applied Optics, 33, 1108–1110.10.1364/AO.33.00110820862124
  10. 10. Kadirgan, F. (2006). Electrochemical nano-coating processes in solar energy systems. Hindawi Publishing Corporation International Journal of Photoenergy, (Article ID 84891), 1–5.10.1155/IJP/2006/84891
  11. 11. Kurtbas, I., and Durmus, A. (2007). A comparison of a new type conical solar collector with a flat-plate solar collector. e-Journal of New World Sciences Academy, 2 (Article Number A0028 ISSN 1306-3111).
  12. 12. Meclouch, R.F., and Brahim, A. B. (2008). A global solar radiation model for the design of solar energy systems. Asian Journal of Scientific Research, 1(3), 231–238.10.3923/ajsr.2008.231.238
  13. 13. Mghouchi, Y. et al. (2014). New model to estimate and evaluate the solar radiation. International Journal of Sustainable Built Environment, 3(2), 225–234. Available at: http://www.sciencedirect.com/science/article/pii/S221260901400051X.
  14. 14. Pelece, I., Vanags, M., and Migla, L. (2010). Evaluation of atmospheric lucidity and diffused radiation. Latvian Journal of Physics and Technical Sciences, 6, 40–46.10.2478/v10047-010-0029-7
  15. 15. Pelece, I., and Ziemelis, I. (2012). Water heating effectiveness of semi-spherical solar collector. In Proceedings of International Scientific Conference “Renewable Energy and Energy Efficiency”. LLU, ISBN 978-9984-48-070-1, 185–188.
  16. 16. Siwulski, S., Nocun, M., and Gruszka, B. (2005). Glassy coating for solar energy conversion. Optica Applicata, 35(4).
  17. 17. Slama, R. B. (2009). Incidental solar radiation according to the solar collector slope – Horizontal measurements conversion on an inclined panel laws. The Open Renewable Energy Journal, 2, 52–58.10.2174/1876387100902010052
  18. 18. Zagars, J., and Vilks, I. (2005). Astronomija augstskolam, Riga, Latvia: LU.
DOI: https://doi.org/10.1515/lpts-2016-0017 | Journal eISSN: 2255-8896 | Journal ISSN: 0868-8257
Language: English
Page range: 11 - 21
Published on: Jul 27, 2016
Published by: Institute of Physical Energetics
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2016 I. Pelece, P. Shipkovs, published by Institute of Physical Energetics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.