Have a personal or library account? Click to login
Experimental and Numerical Analysis of Air Flow, Heat Transfer and Thermal Comfort in Buildings with Different Heating Systems Cover

Experimental and Numerical Analysis of Air Flow, Heat Transfer and Thermal Comfort in Buildings with Different Heating Systems

By: A. Sabanskis and  J. Virbulis  
Open Access
|May 2016

References

  1. 1. Rhee, K.N., Kim, K.W. (2015). A 50 year review of basic and applied research in radiant heating and cooling systems for the built environment. Building and Environment 91, 166–190.10.1016/j.buildenv.2015.03.040
  2. 2. Hakkaki-Fard, A., Eslami-Nejad, P. Aidoun, Z., and Ouzzane, M. (2015). A techno-economic comparison of a direct expansion ground-source and an air-source heat pump system in Canadian cold climates. Energy 87 (1), 49–59.10.1016/j.energy.2015.04.093
  3. 3. Garcia, J.A. (2010). A Review of General and Local Thermal Comfort Models for Controlling Indoor Ambiences. Air Quality, Ashok Kumar (Ed.), ISBN: 978-953-307-131-2, InTech.
  4. 4. ISO 7730:2005. (2005). Ergonomics of the Thermal Environment – Analytical Determination and Interpretation of Thermal Comfort Using Calculation of the PMV and PPD Indices and Local Thermal Comfort Criteria. Geneva, Switzerland: International Organization for Standardization.
  5. 5. Myhren, J.A., and Holmberg S. (2008). Flow patterns and thermal comfort in a room with panel, floor and wall heating. Energy and Buildings 40 (4), 524–536.10.1016/j.enbuild.2007.04.011
  6. 6. Stamou, A., and Katsiris, I. (2006). Verification of a CFD model for indoor airflow and heat transfer. Building and Environment 41 (9), 1171–1181.10.1016/j.buildenv.2005.06.029
  7. 7. Tiberiu C., Virgone, J., and Kuznik, F. (2009). Evaluation of thermal comfort using combined CFD and experimentation study in a test room equipped with a cooling ceiling. Building and Environment 44 (8), 1740–1750.
  8. 8. Jakovics, A., Gendelis, S., Ratnieks, J., and Sakipova, S. (2014). Monitoring and Modelling of Energy Efficiency for Low Energy Testing Houses in Latvian Climate Conditions. International Journal of Energy. 8, 76–83.
  9. 9. Greitans, M., Grunde, U., Jakovics, A., and Gendelis, S. (2013). Web-based real-time data acquisition system as tool for energy efficiency monitoring. In: 21st Telecommunications Forum (TELFOR), 26–28 November 2013 (pp. 553–556). Belgrade, Serbia: IEEE.
  10. 10. Datasheet SHT7x Humidity and Temperature Sensor IC. (2015). Available at http://www.sensirion.com/fileadmin/user_upload/customers/sensirion/Dokumente/Humidity/Sensirion_Humidity_SHT7x_Datasheet_V5.pdf.
  11. 11. The Open Source CFD Toolbox OpenFOAM. (2015). Available at http://www.open-foam.org/
  12. 12. Langley Research Center Turbulence Modelling Resource. (2015). Available at http://turbmodels.larc.nasa.gov/sst.html.
  13. 13. Menter, F. R., Kuntz, M., and Langtry, R. (2003). Ten Years of Industrial Experience with the SST Turbulence Model. Turbulence, Heat and Mass Transfer. 4, 625–632.
  14. 14. Ratnieks, J., Jakovičs, A., and Gendelis, S. (2014). Mathematical modelling of airflow velocity and temperature fields for experimental test houses. In: Proceedings of the 10th Nordic Symposium on Building Physics, 15–19 June 2014, (pp. 871–878). Lund, Sweden.
DOI: https://doi.org/10.1515/lpts-2016-0010 | Journal eISSN: 2255-8896 | Journal ISSN: 0868-8257
Language: English
Page range: 20 - 30
Published on: May 20, 2016
Published by: Institute of Physical Energetics
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2016 A. Sabanskis, J. Virbulis, published by Institute of Physical Energetics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.