2. Batzill, M. (2012). The surface science of graphene: Metal interfaces, CVD synthesis, nanoribbons, chemical modifications, and defects. Surface Science Reports 2012: 67, 83–33.10.1016/j.surfrep.2011.12.001
3. Singh, V., Joung, D., Zhai, L., Das, S., Khondaker, S.I., and Seal, S. (2011). Graphene based materials: Past, present and future. Progress in Materials Sci 2011:56, 1178–94.
6. Yuana, W., Li, B., and Li, L. (2011). A green synthetic approach to graphene nanosheets for hydrogen adsorption. App Surf Sci 2011:257, 10183–4.10.1016/j.apsusc.2011.07.015
8. Liu, W., Li, H., Xu, C., Khatami, Y., and Banerjee, K. (2011). Synthesis of high-quality monolayer and bilayer graphene on copper using chemical vapor deposition. Carbon 2011:49, 4122–8.10.1016/j.carbon.2011.05.047
9. Zheng, M., Takei, K., Hsia, B., Fang, H., Zhang, X., Ferralis, N., et al. (2010). Metal-catalyzed crystallization of amorphous carbon to graphene. Appl Phys Lett 2010: 96(6), 063110–3.10.1063/1.3318263
10. Wang, G., Ding, G., Zhu, Y., Chen, D., Ye, L., Zheng, L., Zhang, M., Di, Z., and Liu, S. (2013). Growth of controlled thickness graphene by ion implantation for field-effect transistor. Materials Lett 2013: 107, 170–3.10.1016/j.matlet.2013.06.013
11. Koh, A.T. T., Foong, Y., M., and Chua, D., H. C. (2012). Comparison of the mechanism of low defect few-layer graphene fabricated on different metals by pulsed laser deposition. Diamond & Related Materials 2012:25, 98–4.10.1016/j.diamond.2012.02.014
12. Li, D., Zeng, X., Yang, Y., Yang, J., and Yuan, W. Freestanding graphene in large quantity prepared by Nickel catalyzed decomposition of SiC powder. Materials Lett 2012: 74, 19–3.10.1016/j.matlet.2012.01.057
13. Hong, N., Yang, W., Bao, C., Jiang, S., Song, L., and Hua, Y. (2012). Facile synthesis of graphene by pyrolysis of poly(methyl methacrylate) on nickel particles in the confined microzones. Materials Research Bull 2012:47, 4082–6.10.1016/j.materresbull.2012.08.049
14. Baraton, L., He, Z. B., Lee, C. S., Cojocaru, C. S., Chatelet, M., Maurice J. L., Lee Y. H., and Pribat, D. (2011). On the mechanisms of precipitation of graphene on nickel thin films. European Phys Lett 2011: 96, 46003–6.10.1209/0295-5075/96/46003
16. Grehov, V., Kalnacs, J., Vilken, A., Mishnev, A., Chikvaidze, G., Knite, M., and Saharov, D. (2014). Graphene nanosheets grown on Ni particles. Joint symposium RCBJSF-2014-FM&NT. Book of Abstracts, 303.
17. Gupta, A.K. (2009). Raman Scattering from n-Graphene Layers [dissertation]. The Pennsylvania State University: The Graduate School, Department of Physics, 50–3.
18. Takahashi, K., Yamada, K., Kato, H., Hibino, H., and Homma, Y. (2012). In situ scanning electron microscopy of graphene growth on polycrystalline Ni substrate. Surface Science 2012: 606, 728–4.10.1016/j.susc.2011.12.009
20. Iwashita, N., Park, C. R., Fujimoto, H., Shiraishi, M., and Inagaki, M. (2004). Specification for a standard procedure of X-ray diffraction measurements on carbon materials. Carbon 2004:42, 701–13.10.1016/j.carbon.2004.02.008
21. Grehov, V., Kalnacs, J., Vilken, A., Mishnev, A., Knite, M., and Kundzins, K. (2015). Structural investigation of graphenic carbon materials obtained on nickel particles. FM&NT-2015 Functional Materials and Nanotechnologies. Book of Abstracts, 115.
22. Obraztsov, A. N., Obraztsova, E. A., Tyurnina, A. V., and Zolotukhin, A. A. (2007). Chemical vapor deposition of thin graphite films of nanometer thickness. Carbon 2007:45, 2017–4.10.1016/j.carbon.2007.05.028
23. Reina, A., Jia, X., Ho, J., Nezich, D., Son, H., Bulovic, V., Dresselhaus, M.S., and Kong, J. (2009). Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett 2009: 9, 30–5.10.1021/nl801827v19046078
24. Zhang, Y., Lewis Gomez, L., Ishikawa, F. N., Madaria, A., Ryu, K., Wang, C., Badmaev, A., and Zhou, C. (2010). Comparison of graphene growth on single crystalline and polycrystalline Ni by chemical vapor deposition. J Phys Chem Lett 2010:1, 3101–6.10.1021/jz1011466
25. Fogarassya, Z., Rummelib, M. H., Gorantlad, S., Bachmatiukb, A., Dobrika, G., Kamarase, K., Laszlo, P. B., Havancsak, K., Labar, J. L. (2014). Dominantly epitaxial growth of graphene on Ni (111) substrate. Appl Surf Sci 2014:314, 490–9.10.1016/j.apsusc.2014.06.197
26. Gong, Y., Zhang, X., Liu, G., Wu, L., Geng, X., Long, M., Cao, X., Guo, Y., Li, W., Xu, J., Sun, M., Lu, L., and Liu, L. (2012). Layer-controlled and wafer-scale synthesis of uniform and high-quality graphene films on a polycrystalline nickel catalyst. Adv Funct Mater 2012: 22, 3153–6.10.1002/adfm.201200388
27. Hu, H., Zhao, Z., Zhou, Q., Gogotsi, Y., and Qiu, J. (2012). The role of microwave absorption on formation of graphene from graphite oxide. Carbon 2012:50, 3267–6.10.1016/j.carbon.2011.12.005
28. Kicinski, W., Norek, M., and Bystrzejewski, M. (2013). Monolithic porous graphitic carbons obtained through catalytic graphitization of carbon xerogels. J of Phys and Chem of Solids 2013: 74, 101–8.10.1016/j.jpcs.2012.08.007
29. Reina, A., Thiele, S., Jia, X., Bhaviripudi, S., Dresselhaus, M. S., Schaefer, J.A., and Kong, J. (2009). Growth of large-area single- and bi-layer graphene by controlled carbon precipitation on polycrystalline Ni surfaces. Nano Res 2009: 2, 509–7.10.1007/s12274-009-9059-y
31. Fujimoto, H. (2003). Theoretical X-ray scattering intensity of carbons with turbostratic stacking and AB stacking structures. Carbon 2003: 41, 1585–7.10.1016/S0008-6223(03)00116-7
32. Букалов, С. С., Михалицын, Л. А., Зубавичус, Я. В., Лейтес, Л. А., Новиков, Ю. Н. (2006). Исследование строения графитов и некотрых других sp2 углеродных материалов методами микроспектроскопии КР и рентгеновской дифрактометрии. Рос Хим ж 2006: L(1), 83–8.