Have a personal or library account? Click to login
Synthesis of Graphenic Carbon Materials on Nickel Particles with Controlled Quantity of Carbon Cover

Synthesis of Graphenic Carbon Materials on Nickel Particles with Controlled Quantity of Carbon

Open Access
|Mar 2016

References

  1. 1. Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., et al. (2004). Electric field effect in aAtomically thin carbon films. Sci 2004:306, 666–9.
  2. 2. Batzill, M. (2012). The surface science of graphene: Metal interfaces, CVD synthesis, nanoribbons, chemical modifications, and defects. Surface Science Reports 2012: 67, 83–33.10.1016/j.surfrep.2011.12.001
  3. 3. Singh, V., Joung, D., Zhai, L., Das, S., Khondaker, S.I., and Seal, S. (2011). Graphene based materials: Past, present and future. Progress in Materials Sci 2011:56, 1178–94.
  4. 4. Avouris, P., and Dimitrakopoulos, C. (2012). Graphene synthesis and application. Materials Today 2012: 15(3), 86–11.10.1016/S1369-7021(12)70044-5
  5. 5. Wang, S.J., Geng, Y., Zheng, Q., and Kim, J.K. (2010). Fabrication of highly conducting and transparent graphene films. Carbon 2010:48, 1815–8.10.1016/j.carbon.2010.01.027
  6. 6. Yuana, W., Li, B., and Li, L. (2011). A green synthetic approach to graphene nanosheets for hydrogen adsorption. App Surf Sci 2011:257, 10183–4.10.1016/j.apsusc.2011.07.015
  7. 7. Yu, Q.K., Lian, J., Siriponglert, S., Li, H., Yong, Chen P.Y., and Pei, S.S. (2008). Graphene segregated on Ni surfaces and transferred to insulators. Appl phys lett 2008: 93, 113103–3.10.1063/1.2982585
  8. 8. Liu, W., Li, H., Xu, C., Khatami, Y., and Banerjee, K. (2011). Synthesis of high-quality monolayer and bilayer graphene on copper using chemical vapor deposition. Carbon 2011:49, 4122–8.10.1016/j.carbon.2011.05.047
  9. 9. Zheng, M., Takei, K., Hsia, B., Fang, H., Zhang, X., Ferralis, N., et al. (2010). Metal-catalyzed crystallization of amorphous carbon to graphene. Appl Phys Lett 2010: 96(6), 063110–3.10.1063/1.3318263
  10. 10. Wang, G., Ding, G., Zhu, Y., Chen, D., Ye, L., Zheng, L., Zhang, M., Di, Z., and Liu, S. (2013). Growth of controlled thickness graphene by ion implantation for field-effect transistor. Materials Lett 2013: 107, 170–3.10.1016/j.matlet.2013.06.013
  11. 11. Koh, A.T. T., Foong, Y., M., and Chua, D., H. C. (2012). Comparison of the mechanism of low defect few-layer graphene fabricated on different metals by pulsed laser deposition. Diamond & Related Materials 2012:25, 98–4.10.1016/j.diamond.2012.02.014
  12. 12. Li, D., Zeng, X., Yang, Y., Yang, J., and Yuan, W. Freestanding graphene in large quantity prepared by Nickel catalyzed decomposition of SiC powder. Materials Lett 2012: 74, 19–3.10.1016/j.matlet.2012.01.057
  13. 13. Hong, N., Yang, W., Bao, C., Jiang, S., Song, L., and Hua, Y. (2012). Facile synthesis of graphene by pyrolysis of poly(methyl methacrylate) on nickel particles in the confined microzones. Materials Research Bull 2012:47, 4082–6.10.1016/j.materresbull.2012.08.049
  14. 14. Baraton, L., He, Z. B., Lee, C. S., Cojocaru, C. S., Chatelet, M., Maurice J. L., Lee Y. H., and Pribat, D. (2011). On the mechanisms of precipitation of graphene on nickel thin films. European Phys Lett 2011: 96, 46003–6.10.1209/0295-5075/96/46003
  15. 15. Chen, Z., Ren, W., Liu, B., Gao, L., Pei, S., Wu, Z.–S., Zhao, J., and Cheng, H.–M. Bulk growth of mono-to few-layer graphene on nickel particles by chemical vapor deposition from methane. Carbon 2010: 48, 3543–7.10.1016/j.carbon.2010.05.052
  16. 16. Grehov, V., Kalnacs, J., Vilken, A., Mishnev, A., Chikvaidze, G., Knite, M., and Saharov, D. (2014). Graphene nanosheets grown on Ni particles. Joint symposium RCBJSF-2014-FM&NT. Book of Abstracts, 303.
  17. 17. Gupta, A.K. (2009). Raman Scattering from n-Graphene Layers [dissertation]. The Pennsylvania State University: The Graduate School, Department of Physics, 50–3.
  18. 18. Takahashi, K., Yamada, K., Kato, H., Hibino, H., and Homma, Y. (2012). In situ scanning electron microscopy of graphene growth on polycrystalline Ni substrate. Surface Science 2012: 606, 728–4.10.1016/j.susc.2011.12.009
  19. 19. Inagaki, M., Qiu, J., and Guo, Q. (2015). Carbon foam: Preparation and application. Carbon 2015: 87, 128–24.10.1016/j.carbon.2015.02.021
  20. 20. Iwashita, N., Park, C. R., Fujimoto, H., Shiraishi, M., and Inagaki, M. (2004). Specification for a standard procedure of X-ray diffraction measurements on carbon materials. Carbon 2004:42, 701–13.10.1016/j.carbon.2004.02.008
  21. 21. Grehov, V., Kalnacs, J., Vilken, A., Mishnev, A., Knite, M., and Kundzins, K. (2015). Structural investigation of graphenic carbon materials obtained on nickel particles. FM&NT-2015 Functional Materials and Nanotechnologies. Book of Abstracts, 115.
  22. 22. Obraztsov, A. N., Obraztsova, E. A., Tyurnina, A. V., and Zolotukhin, A. A. (2007). Chemical vapor deposition of thin graphite films of nanometer thickness. Carbon 2007:45, 2017–4.10.1016/j.carbon.2007.05.028
  23. 23. Reina, A., Jia, X., Ho, J., Nezich, D., Son, H., Bulovic, V., Dresselhaus, M.S., and Kong, J. (2009). Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett 2009: 9, 30–5.10.1021/nl801827v19046078
  24. 24. Zhang, Y., Lewis Gomez, L., Ishikawa, F. N., Madaria, A., Ryu, K., Wang, C., Badmaev, A., and Zhou, C. (2010). Comparison of graphene growth on single crystalline and polycrystalline Ni by chemical vapor deposition. J Phys Chem Lett 2010:1, 3101–6.10.1021/jz1011466
  25. 25. Fogarassya, Z., Rummelib, M. H., Gorantlad, S., Bachmatiukb, A., Dobrika, G., Kamarase, K., Laszlo, P. B., Havancsak, K., Labar, J. L. (2014). Dominantly epitaxial growth of graphene on Ni (111) substrate. Appl Surf Sci 2014:314, 490–9.10.1016/j.apsusc.2014.06.197
  26. 26. Gong, Y., Zhang, X., Liu, G., Wu, L., Geng, X., Long, M., Cao, X., Guo, Y., Li, W., Xu, J., Sun, M., Lu, L., and Liu, L. (2012). Layer-controlled and wafer-scale synthesis of uniform and high-quality graphene films on a polycrystalline nickel catalyst. Adv Funct Mater 2012: 22, 3153–6.10.1002/adfm.201200388
  27. 27. Hu, H., Zhao, Z., Zhou, Q., Gogotsi, Y., and Qiu, J. (2012). The role of microwave absorption on formation of graphene from graphite oxide. Carbon 2012:50, 3267–6.10.1016/j.carbon.2011.12.005
  28. 28. Kicinski, W., Norek, M., and Bystrzejewski, M. (2013). Monolithic porous graphitic carbons obtained through catalytic graphitization of carbon xerogels. J of Phys and Chem of Solids 2013: 74, 101–8.10.1016/j.jpcs.2012.08.007
  29. 29. Reina, A., Thiele, S., Jia, X., Bhaviripudi, S., Dresselhaus, M. S., Schaefer, J.A., and Kong, J. (2009). Growth of large-area single- and bi-layer graphene by controlled carbon precipitation on polycrystalline Ni surfaces. Nano Res 2009: 2, 509–7.10.1007/s12274-009-9059-y
  30. 30. Tu, Z., Liu, Z., Li, Y., Yang, F., Zhang, L., Zhao, Z., Xu, Ch., Wu, S., Liu, H., Yang, H., and Richard, P. (2014). Controllable growth of 1–7 layers of graphene by chemical vapour deposition. Carbon 2014 73, 252–6.10.1016/j.carbon.2014.02.061
  31. 31. Fujimoto, H. (2003). Theoretical X-ray scattering intensity of carbons with turbostratic stacking and AB stacking structures. Carbon 2003: 41, 1585–7.10.1016/S0008-6223(03)00116-7
  32. 32. Букалов, С. С., Михалицын, Л. А., Зубавичус, Я. В., Лейтес, Л. А., Новиков, Ю. Н. (2006). Исследование строения графитов и некотрых других sp2 углеродных материалов методами микроспектроскопии КР и рентгеновской дифрактометрии. Рос Хим ж 2006: L(1), 83–8.
DOI: https://doi.org/10.1515/lpts-2016-0006 | Journal eISSN: 2255-8896 | Journal ISSN: 0868-8257
Language: English
Page range: 53 - 65
Published on: Mar 17, 2016
Published by: Institute of Physical Energetics
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2016 V. Grehov, J. Kalnacs, A. Mishnev, K. Kundzins, published by Institute of Physical Energetics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.