Have a personal or library account? Click to login
Obtaining a Well-Aligned ZnO Nanotube Array Using the Hydrothermal Growth Method / Labi Sakārtotu Zno Nanocauruļu Kopu Iegūšana, Izmantojot Hidrotermālo Metodi Cover

Obtaining a Well-Aligned ZnO Nanotube Array Using the Hydrothermal Growth Method / Labi Sakārtotu Zno Nanocauruļu Kopu Iegūšana, Izmantojot Hidrotermālo Metodi

Open Access
|Nov 2015

References

  1. 1. Fan, Z., and Lu, J. G. (2005). Zinc oxide nanostructures: synthesis and properties. J Nanosci Nanotechnol. 5 (10), 1561-73. DOI: 10.1166/jnn.2005.182.10.1166/jnn.2005.18216245516
  2. 2. Xu, S., and Wang, Z. L. (2011). One-dimensional ZnO nanostructures: Solution growth and functional properties. Nano Res. 4 (11). DOI: 10.1007/s12274-011-0160-7.10.1007/s12274-011-0160-7
  3. 3. Amin, G. (2012). ZnO and CuO Nanostructures: Low Temperature Growth, Characterization, Their Optoelectronic and Sensing Applications. Linköping Studies in Science and Technology, Dissertation, No. 1441.
  4. 4. Chae, K., Zhang, Q., Kim, J.S., Jeong, Y., and Cao, G. (2010). Low-temperature solution growth of ZnO nanotube arrays. Beilstein J.Nanotechnol 1, 128-134. DOI:10.3762/ bjnano.1.15.10.3762/bjnano.1.15304591421977402
  5. 5. McCune, M., Zhang, W., and Deng, Y. (2012). High efficiency dye-sensitized solar cells based on three-dimensional multilayered ZnO nanowire arrays with “caterpillar-like” structure. Nano Lett. 12 (7), 3656−3662. DOI: 10.1021/nl301407b.10.1021/nl301407b22731504
  6. 6. Barreca, D., Bekermann, D., Comini, E., Devi, A., Fischer, R., Gasparotto, A., Maccato, C., Sada, C., Sberveglieric, G., and Tondellod, E. (2010). Urchin-like ZnO nanorod arrays for gas sensing applications. CrystEngComm 12(11), 3419-3421, DOI: 10.1039/ C0CE00139B.
  7. 7. Guo, X., Zhao, Q., Li, R., Pan, H., Guo, X., Yin, A., and Dai, W. (2010). Synthesis of ZnO nanofowers and their wettabilities and photocatalytic properties. Opt Express 18(17): 18401-6. DOI: 10.1364/OE.18.018401.10.1364/OE.18.01840120721234
  8. 8. Xi, Y., Song, J., Xu, S., Yang, R., Gao, Z., Hu, C. and Wang, Z. (2009). Growth of ZnO nanotube arrays and nanotube based piezoelectric nanogenerators. J. Mater. Chem. 19(48), 9260-9264. DOI: 10.1039/B917525C.10.1039/b917525c
  9. 9. Ali, S.M.U., Kashif, M., Ibupoto, Z.H., Fakhar-e-Alam, M., Hashim, U., and Willander, M. (2011). Functionalised zinc oxide nanotube arrays as electrochemical sensors for the selective determination of glucose. Micro & Nano Letters 6(8), 609-613. DOI: 10.1049/ mnl.2011.0310.10.1049/mnl.2011.0310
  10. 10. Choopun, S., Hongsith, N., and Wongrat, E. (2012), Metal-oxide nanowires for gas sensors. InTech. DOI: 10.5772/54385. 10.5772/54385
  11. 11. Liu, Y., Zhang, Y., Lei, H., Jingwei, S., Hui, C., and Baojun, L. (2012). Growth of wellarrayed ZnO nanorods on thinned silica fiber and application for humidity sensing. Optic Express 20(17). DOI: 10.1364/OE.20.019404.10.1364/OE.20.01940423038583
  12. 12. Rahman, M., Ahammad, A. J. S., Jin, J.H., Ahn, S.J., and Lee, J.J. (2010). A comprehensive review of glucose biosensors based on nanostructured metal-oxides. Sensors 10(5), 4855-4886, DOI: 10.3390/s100504855.10.3390/s100504855329215122399911
  13. 13. Nozaki, S., Sarangi, S.N., Uchida, K., and Sahu, S.N. (2013). Hydrothermal growth of zinc oxide nanorods and glucose-sensor application. Soft Nanoscience Letters 3(4A), 23-26. DOI: 10.4236/snl.2013.34A007.10.4236/snl.2013.34A007
  14. 14. Fulati, A., Usman Ali, S.M, Riaz, M., Amin, G., Nur, O., and Willander M. (2009). Miniaturized pH sensors based on zinc oxide nanotubes/nanorods. Sensors 9(11), 8911-8923. DOI: 10.3390/s91108911.10.3390/s91108911326062222291545
  15. 15. Roza, L., Rahman, M.Y.A., Umar, A.A., and Salleh, M.M. (2015). Direct growth of oriented ZnO nanotubes by self-selective etching at lower temperature for photo-electrochemical (PEC) solar cell application. Journal of Alloys and Compounds 618, 153-158. DOI:10.1016/j.jallcom.2014.08.113.10.1016/j.jallcom.2014.08.113
  16. 16. Han, J., Fan, F., Xu, C., Lin, S., Wei, M., Duan, X., and Wang, L. Z. (2010). ZnO nanotube- based dye-sensitized solar cell and its application in self-powered devices. Nanotechnology 21(40), 405203 (7pp.). DOI:10.1088/0957-4484/21/40/405203.10.1088/0957-4484/21/40/40520320829568
  17. 17. Luoa, L., Lva, G., Lia, B., Hua, X., Jinb, L., Wang, J., and Tang, Y. (2010). Formation of aligned ZnO nanotube arrays by chemical etching and coupling with CdSe for photovoltaic application. Thin Solid Films 518 (18), 5146-5152. DOI:10.1016/j.tsf.2010.03.014.10.1016/j.tsf.2010.03.014
  18. 18. Gana, X., Lia, X., Gaoa, X., and Yua, W. (2009). Investigation on chemical etching process of ZnO nanorods toward nanotubes. Journal of Alloys and Compounds 481 (1-2), 397-401. DOI:10.1016/j.jallcom.2009.03.013.10.1016/j.jallcom.2009.03.013
  19. 19. Xua, S., Laoa, C. Weintrauba, B., and Wang, Z.L. (2008). Density-controlled growth of aligned ZnO nanowire arrays by seedless chemical approach on smooth surfaces J. Mater. Res. 23(8). DOI: http://dx.doi.org/10.1557/JMR.2008.0274.10.1557/JMR.2008.0274
  20. 20. Baruah, S., and Dutta, J. (2009). Hydrothermal growth of ZnO nanostructures. Sci. Technol. Adv. Mater. 10(1), 013001 (18 pp.). DOI:10.1088/1468-6996/10/1/013001.10.1088/1468-6996/10/1/013001510959727877250
  21. 21. Kwon, J., Hong, S., Lee, H., Yeo, J., Lee, S., and Hwan Ko, S. (2013). Direct selective growth of ZnO nanowire arrays from inkjet-printed zinc acetate precursor on a heated substrate. Nanoscale Research Letters 8, 489. DOI: 10.1186/1556-276X-8-489.10.1186/1556-276X-8-489384282724252130
  22. 22. Meen, T.H., Water, W., Chen, Y.S., Chen, W.R., Ji, L.W., and Huang, C.J. (2007). Growth of ZnO nanorods by hydrothermal method under different temperatures. Electron Devices and Solid-State Circuits, 617-620.
  23. 23. Hsu, J.F, Xi, J.J, and Tam, K.H. (2008). Undoped p-type ZnO nanorods synthesized by a hydrothermal method. Adv. Funct. Mater. 18(7), 1020-1030. DOI: 10.1002/ adfm.200701083.10.1002/adfm.200701083
  24. 24. Soomro, M.Y., Hussain, I., Bano, N., Jun, Lu, Hultman, L., and Nur, O. (2012). Growth, structural and optical characterization of ZnO nanotubes on disposable-flexible paper substrates by low-temperature chemical method. Journal of Nanotechnology 2012 (01). DOI: 10.1155/2012/251863.10.1155/2012/251863
  25. 25. Liu, B., and Zeng, H.C. (2009). Direct growth of enclosed ZnO nanotubes. Nano Res 2 (3), 201-209. DOI 10.1007/s12274-009-9018-7.10.1007/s12274-009-9018-7
  26. 26. Akgun, C.M., Kalay, Y.E., and Unalan, H.E. (2012). Hydrothermal zinc oxide nanowire growth using zinc acetate dihydrate salt. J. Mater. Res. 27 (11). DOI: http://dx.doi.org/10.1557/jmr.2012.92. 10.1557/jmr.2012.92
  27. 27. Wang, Y., and Cui, Z. (2009). Synthesis and photoluminescence of well aligned ZnO nanotube arrays by a simple chemical solution method. Journal of Physics 152. DOI:10.1088/1742-6596/152/1/012021.10.1088/1742-6596/152/1/012021
  28. 28. Kwon, J., Hong, S., Lee, H., Yeo, J., Lee, S., and Hwan Ko, S. (2013). Direct selective growth of ZnO nanowire arrays from inkjet-printed zinc acetate precursor on a heated substrate. Nanoscale Research Letters 8, 489.10.1186/1556-276X-8-489384282724252130
  29. 29. Wang, C., Yin, L., Zhang, L, Xiang, D., and Gao, R. (2010). Metal oxide gas sensors: Sensitivity and influencing factors. Sensors 10, 2088-2106. DOI: 10.3390/s100302088.10.3390/s100302088326446922294916
  30. 30. Shabaneh, A.A., Girei, S.H., Arasu, P.T., Rashid, S.A., Yunusa, Z, Mahdi, M.A., Paiman, S., Ahmad, M.Z., and Yaacob, M.H. (2014). Reflectance response of optical fiber coated with carbon nanotubes for aqueous ethanol sensing. IEEE Photonic Journal 6 (6). DOI: 10.1109/JPHOT.2014.2363429.10.1109/JPHOT.2014.2363429
  31. 31. Aryaa, S.K., Sahab, S., Ramirez-Vickc, J.E, Gupta, V., Bhansalid, S., and Singhe, S.P. (2012). Recent advances in ZnO nanostructures and thin films for biosensor applications: Review. Analytica Chimica Acta 737 (1), 21. DOI:10.1016/j.aca.2012.05.048. 10.1016/j.aca.2012.05.04822769031
DOI: https://doi.org/10.1515/lpts-2015-0026 | Journal eISSN: 2255-8896 | Journal ISSN: 0868-8257
Language: English
Page range: 28 - 40
Published on: Nov 26, 2015
Published by: Institute of Physical Energetics
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2015 M. Krasovska, V. Gerbreders, V. Paskevics, A. Ogurcovs, I. Mihailova, published by Institute of Physical Energetics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.