Have a personal or library account? Click to login
The Kinetic Study of The Hydrothermal Growth of Zno Nanorod Array Films / Zno Nanostieņu Kopu Pārklājuma Hidrotermālās Augšanas Kinētikas Izpēte Cover

The Kinetic Study of The Hydrothermal Growth of Zno Nanorod Array Films / Zno Nanostieņu Kopu Pārklājuma Hidrotermālās Augšanas Kinētikas Izpēte

Open Access
|Nov 2015

References

  1. 1. Tang, W., and Wang, J. (2015). Mechanism for toluene detection of flower-like ZnO sensors prepared by hydrothermal approach: Charge transfer. Sensors and Actuators B, 207, 66-73.10.1016/j.snb.2014.10.018
  2. 2. Wei, A., Pan, L., and Huang, W. (2011). Recent progress in the ZnO nanostructure-based sensors. Materials Science and Engineering B, 176, 1409-1421.10.1016/j.mseb.2011.09.005
  3. 3. Arya, S.K., Saha, S., Ramirez-Vick, J. E., Gupta, V., Bhansali, S., and Singh, S.P. (2012). Recent advances in ZnO nanostructures and thin films for biosensor applications: Review. Analytica Chimica Acta, 737, 1-21.10.1016/j.aca.2012.05.04822769031
  4. 4. Pan, C.T., Chen, Y.C., Hsieh, C.C., Lin, C.H., Su, C.Y., Yen, C.K., Liu, Z.H., and Wang, W.C. (2014). Ultrasonic sensing device with ZnO piezoelectric nanorods by selectively electrospraying method. Sensors and Actuators A: Physical, 216, 318-327.10.1016/j.sna.2014.05.024
  5. 5. Wang, X. (2012). Piezoelectric nanogenerators - Harvesting ambient mechanical energy at the nanometer scale. Nano Energy, 1, 13-24.10.1016/j.nanoen.2011.09.001
  6. 6. Tang, Z., Koshino, H., Sato, S., Shimizu, H., and Shirai, H. (2012). Rapid thermal annealing treatment of ZnO: Al films for photovoltaic applications. Journal of Non-Crystalline Solids, 358, 2501-2503.10.1016/j.jnoncrysol.2012.03.026
  7. 7. Guérin, V. M., Rathousky, J., and Pauporté, Th. (2012). Electrochemical design of ZnO hierarchical structures for dye-sensitized solar cells. Solar Energy Materials and Solar Cells, 102, 8-14.10.1016/j.solmat.2011.11.046
  8. 8. Zou, X., Fan, H., Tian, Y., and Yan, S. (2013). Facile hydrothermal synthesis of large scale ZnO nanorod arrays and their growth mechanism. Materials Letters, 107, 269-272.10.1016/j.matlet.2013.06.003
  9. 9. Zhitao, H., Sisi, L., Jinkui, C., and Yong, C. (2013). Controlled growth of well-aligned ZnO nanowire arrays using the improved hydrothermal method. Journal of Semiconductors, 34, 063002-1-16.
  10. 10. Hong, S., Yeo, J., Manorotkul, W., Kang, H. W., Lee, J., Han, S., Rho, Y., Suh, Y. D., Sung, H. J., and Hwan Ko, S. (2013). Digital selective growth of a ZnO nanowire array by large scale laser decomposition of zinc acetate. Nanoscale, 5, 3698-3703.10.1039/c3nr34346d23494004
  11. 11. Huang, B.R., and Lin, J.C. (2013). A facile synthesis of ZnO nanotubes and their hydrogen sensing properties. Applied Surface Science, 280, 945-949.10.1016/j.apsusc.2013.05.112
  12. 12. Hsu, Y.F., Xi, Y.Y., Tam, K.H., Djurišić, A.B., Luo, J., Ling, C.C., Cheung, C.K., Ching, A.M., Chan, W.K., Deng, X., Beling, C.D., Fung, S., Cheah, K.W., Keung Fong, P.W., and Surya, C.C. (2008). Undoped p-Type ZnO Nanorods Synthesized by a Hydrothermal Method. Advanced Functional Materials, 18(7), 1020-1030.10.1002/adfm.200701083
  13. 13. Lu, M.P., Lu, M.Y., and Chen, L.J. (2012). p-Type ZnO nanowires: From synthesis to nanoenergy. Nano Energy, 1, 247-258.10.1016/j.nanoen.2011.12.004
  14. 14. Vallejo, W., Hurtado, M., and Gordillo, G. (2010). Kinetic study on Zn(O,OH)S thin films deposited by chemical bath deposition. Electrochimica Acta, 55, 5610-5616.10.1016/j.electacta.2010.04.088
  15. 15. Singh, R.G., Singh, F., Kumar, V., and Mehra, R.M. (2011). Growth kinetics of ZnO nanocrystallites: Structural, optical and photoluminescence properties tuned by thermal annealing. Current Applied Physics, 11, 624-630.10.1016/j.cap.2010.10.013
  16. 16. Bouhssira, N., Aida, M.S., Mosbah, A., and Cellier, J. (2010). Isothermal crystallization kinetic of ZnO thin films. Journal of Crystal Growth, 312, 3282-3286.10.1016/j.jcrysgro.2010.08.021
  17. 17. Ko, H.H., Hsi, C.S., Wang, M.C., and Zhao, X. (2014). Crystallite growth kinetics of TiO2 surface modification with 9 mol% ZnO prepared by a coprecipitation process. Journal of Alloys and Compounds, 588, 428-439.10.1016/j.jallcom.2013.11.097
  18. 18. Mihailova, I., Gerbreders, V., Bulanovs, A., Tamanis, E., Sledevskis, E., Ogurcovs, A., and Sarajevs, P. (2014). Controlled growth of well-aligned ZnO nanorod arrays by hydrothermal method. Proc. of SPIE Vol. 9421, 94210A1-8.
  19. 19. Altomare, A., Camalli, M., Cuocci, C., Giacovazzo, C., Moliterni, A., and Rizzi, R. (2009). EXPO2009: Structure solution by powder data in direct and reciprocal space. Appl. Cryst. 42, 1197-1202.DOI:10.1107/S0021889809042915.10.1107/S0021889809042915
  20. 20. Mandelkern, L. (1958). Growth and Perfection of Crystals, in R. H. Doremus, B.W. Roberts, and D. Turnbull eds. New York: John Wiley & Sons Inc., pp. 467-474.
  21. 21. Dong, J.J., Zhen, C.Y., Hao, H.Y., Xing, J., Zhang, Z.L., Zheng, Z.Y., and Zhang, X.W. (2013). Controllable synthesis of ZnO nanostructures on the Si substrate by a hydrothermal route. Nanoscale Res. Lett. 8(1), 378.10.1186/1556-276X-8-378384749524006928
  22. 22. Viswanatha, R., Santra, P.K., Dasgupta, C., and Sarma, D.D. (2007). Growth mechanism of nanocrystals in solution: ZnO, a case study. Phys. Rev. Lett. 98, 255501. 10.1103/PhysRevLett.98.25550117678035
  23. 23. Feng, W., and Huang, P. (2014). A generalized mechanism of 1D ZnO rods growth in homogeneous solution. Ceramics International, 40, 8963-8967.10.1016/j.ceramint.2014.02.065
  24. 24. Yang, Y.H., and Yang, G.W. (2010). Temperature dependence and activation energy of ZnO nanowires grown on amorphous carbon. Chemical Physics Letters, 494, 64-68. 10.1016/j.cplett.2010.05.074
DOI: https://doi.org/10.1515/lpts-2015-0025 | Journal eISSN: 2255-8896 | Journal ISSN: 0868-8257
Language: English
Page range: 20 - 27
Published on: Nov 26, 2015
Published by: Institute of Physical Energetics
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2015 V. Gerbreders, P. Sarajevs, I. Mihailova, E. Tamanis, published by Institute of Physical Energetics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.