Have a personal or library account? Click to login
Development of Solar Powered Feeding Scheme for Wireless Sensor Networks in low Solar Density Conditions / Bezvadu Sensoru Tīklu Elektroapgādes Sistēmas Izstrāde, Kas Izmanto Saules Paneļus Un Darbojas Pazeminātas Saules Radiācijas Apstākļos Cover

Development of Solar Powered Feeding Scheme for Wireless Sensor Networks in low Solar Density Conditions / Bezvadu Sensoru Tīklu Elektroapgādes Sistēmas Izstrāde, Kas Izmanto Saules Paneļus Un Darbojas Pazeminātas Saules Radiācijas Apstākļos

Open Access
|Sep 2015

References

  1. 1. Jayadevan, V.T., Rodriguez, J., Lonij, V.P.A., and Cronin, A.D. (2012). Forecasting solar power intermittency using ground-based cloud imaging. In Proceedings of American Solar Energy Society Meeting.
  2. 2. Lonij, V.P., Jayadevan, V.T., Brooks, A.E., Koch, K., Leuthold, M., and Cronin, A.D. (2012). Improving forecasts of PV power output using real-time measurements of PV output of 100 residential PV installs. In Proceedings of the 38th IEEE Photovoltaics Specialists Conference.
  3. 3. Cronin, A., Pulver, S., Cormode, D., Jordan, D., Kurtz, S., and Smith, R. (2010). Measuring degradation rates without irradiance data. In Proceedings of the 36th IEEE Photovoltaics Specialists Conference, March 2010.
  4. 4. Alippi, C., and Galperti, C. (2008). An adaptive system for optimal solar energy harvesting in wireless sensor network nodes. IEEE Transactions on Circuits and Systems-I. 55 (6).10.1109/TCSI.2008.922023
  5. 5. Brunelli, D., Benini, L., Moser, C., and Thiele, L. (2008). An efficient solar energy harvester for wireless sensor nodes. In DATE ‘08 Proceedings of the Conference on Design, Automation and Test in Europe, (pp. 104-109).10.1145/1403375.1403404
  6. 6. Zabašta, A., Dambrauskas, V., Deksnis, J., Deksnis, V., Gudele, I., Kondratjevs, K., Kriaučeliūnas, A., Kuņicina, N., Navalinskaite, K., Nolendorfs, A., and Šeļmanovs- Plešs, V. (2013). Smart Metering. In Project (LLIV-312) “Smart Metering”, 2013 (pp. 1-110). Ventspils: Engineering Research Institute, Ventspils International Radio Astronomy Centre of Ventspils University College.
  7. 7. Global Horizontal Irradiation (GHI), GeoModel Solar, (2015). Retrieved 20 May 2015, from http://solargis.info/doc/free-solar-radiation-maps-GHI.
  8. 8. Nedumgatt, J. J., Jayakrishnan, K. B., Umashankar, S., Vijayakumar, D., and Kothari, D. P. (2011). Perturb and observe MPPT algorithm for solar PV systems-modelling and simulation. In Annual IEEE India Conference (INDICON), Dec. 2011 (pp. 1-6).
  9. 9. Honsberg, C., and Bowden, S. (n.d.). Measurement of solar cell efficiency. Retrieved 20 May 2015, from http://www.pveducation.org/pvcdrom/characterisation/measurementof-solar-cell-efficiency.
  10. 10. Part II - Photovoltaic Cell I-V Characterization Theory and LabVIEW Analysis Code. (2012). Retrieved 20 May 2015, from http://www.ni.com/white-paper/7230/en/.
  11. 11. Onat, N. (2010). Recent developments in maximum power point tracking technologies for photovoltaic systems. International Journal of Photoenergy 2010 , Article ID 245316 (11 p.).10.1155/2010/245316
  12. 12. Chao, K. H., and Li, C. J. (2010). An intelligent maximum power point tracking method based on extension theory for PV systems. Expert Systems with Applications 37 (2), 1050-1055.10.1016/j.eswa.2009.06.068
  13. 13. International Journal of Electrical and Electronic Engineering & Telecommunications 1.4 (1), January 2015 (23 p.). ISSN 2319 - 2518.
DOI: https://doi.org/10.1515/lpts-2015-0022 | Journal eISSN: 2255-8896 | Journal ISSN: 0868-8257
Language: English
Page range: 43 - 56
Published on: Sep 25, 2015
Published by: Institute of Physical Energetics
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2015 K. Kondratjevs, A. Zabasta, V. Selmanovs-Pless, published by Institute of Physical Energetics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.