Have a personal or library account? Click to login
Impact of Different Building Materials on Summer Comfort in Low-Energy Buildings Cover

Impact of Different Building Materials on Summer Comfort in Low-Energy Buildings

Open Access
|Jul 2015

References

  1. 1. Council Directive 2010/31/EU of 19 May 2010 on the energy performance of buildings (recast). (2010). Official Journal of the European Union, L 153/13, 13-35.
  2. 2. Schnieders, J. (2005). A first-guess passive home in southern France: Passiv- On. Retrieved on 1 March 2015, from www.maison-passive-nice.fr/documents/FirstGuess_Marseille.pdf.
  3. 3. Schnieders, J. (2009). Passive houses in South West Europe. Darmstadt: Passivhaus Institut.
  4. 4. Beizaee, A., Lomas, K., & Firth, S. (2013). National survey of summertime temperatures and overheating risk in English homes. Building and Environment, 65, 1-17. doi:10.1016/j.buildenv.2013.03.011.10.1016/j.buildenv.2013.03.011
  5. 5. Mlakar, J., & Štrancar, J. (2011). Overheating in residential passive house: Solution strategies revealed and confirmed through data analysis and simulations. Energy and Buildings, 43(6), 1443-1451. doi:10.1016/j.enbuild.2011.02.008.10.1016/j.enbuild.2011.02.008
  6. 6. Mlakar, J., & Štrancar, J. (2013). Temperature and humidity profiles in passivehouse building blocks. Building and Environment, 60, 185-193. doi:10.1016/j.buildenv. 2012.11.018.
  7. 7. Spitz, C., Mora, L., Wurtz, E., & Jay, A. (2012). Practical application of uncertainty analysis and sensitivity analysis on an experimental house. Energy and Buildings, 55, 459-470. doi:10.1016/j.enbuild.2012.08.013.10.1016/j.enbuild.2012.08.013
  8. 8. Brun, A., Wurtz, E., Hollmuller, P., & Quenard, D. (2013). Summer comfort in a low-inertia building with a new free-cooling system. Applied Energy, 112, 338-349. doi:10.1016/j.apenergy.2013.05.052.10.1016/j.apenergy.2013.05.052
  9. 9. Bravo, G., & González, E. (2013). Thermal comfort in naturally ventilated spaces and under indirect evaporative passive cooling conditions in hot-humid climate. Energy and Buildings, 63, 79-86. doi:10.1016/j.enbuild.2013.03.007.10.1016/j.enbuild.2013.03.007
  10. 10. Katunský, D., & Lopušniak, M. (2012). Impact of shading structure on energy demand and on risk of summer overheating in a low energy building. Energy Procedia, 14, 1311-1316. doi:10.1016/j.egypro.2011.12.1094.10.1016/j.egypro.2011.12.1094
  11. 11. McLeod, R., Hopfe, C., & Kwan, A. (2013). An investigation into future performance and overheating risks in Passivhaus dwellings. Building and Environment, 70, 189-209. doi:10.1016/j.buildenv.2013.08.024.10.1016/j.buildenv.2013.08.024
  12. 12. Larsen, T. S., & Jensen, R. L. (2011). Comparison of measured and calculated values for the indoor environment in one of the first Danish passive houses. In Building Simulation 2011: Proceedings of the 12th Conference on the International Building Performance Simulation Association. Sydney, Australia: IBPSA Australasia and AIRAH, 1414-1421. 57
  13. 13. Rodrigues, L., Gillott, M., & Tetlow, D. (2013). Summer overheating potential in a lowenergy steel frame house in future climate scenarios. Sustainable Cities and Society, 7, 1-15. doi:10.1016/j.scs.2012.03.004.10.1016/j.scs.2012.03.004
  14. 14. Breesch, H., Bossaer, A., & Janssens, A. (2005). Passive cooling in a low-energy office building. Solar Energy, 79(6), 682-696. doi:10.1016/j.solener.2004.12.002.10.1016/j.solener.2004.12.002
  15. 15. Energy Efficiency Monitoring. (2015). Retrieved on 1 March 2015, from http://www.eem.lv.
  16. 16. International Organisation for Standardisation. (2007). ISO 6946: Building components and building elements - thermal resistance and thermal transmittance - calculation method. Genève, Switzerland: International Organization for Standardization.
  17. 17. Gendelis, S., Jakovičs, A., Nitijevskis, A., & Ratnieks, J. (2013). Comparison of different air tightness and air exchange rate measurements in very small test buildings. In 34th AIVC-3rd TightVent-2nd Cool Roofs’-1st Venticool Conference. Athens, Greece.
  18. 18. Künzel, H. (1995). Simultaneous heat and moisture transport in building components. Stuttgart: IRB Verlag.
DOI: https://doi.org/10.1515/lpts-2015-0017 | Journal eISSN: 2255-8896 | Journal ISSN: 0868-8257
Language: English
Page range: 44 - 57
Published on: Jul 24, 2015
Published by: Institute of Physical Energetics
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2015 A. Ozoliņš, A. Jakovičs, S. Gendelis, published by Institute of Physical Energetics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.