Have a personal or library account? Click to login
Magnetic Field Gradiometer with Sub-Micron Spatial Resolution Based on Caesium Vapour in an Extremely Thin Cell Cover

Magnetic Field Gradiometer with Sub-Micron Spatial Resolution Based on Caesium Vapour in an Extremely Thin Cell

Open Access
|Jul 2015

References

  1. 1. Mathé, V., Lévêque, F., and Druez, M. (2009). What interest to use caesium magnetometer instead of fluxgate gradiometer? Mémoire du sol, espace des homes, 33 (suppl.), 325-327.
  2. 2. Corsini, E., Acosta, V., Baddour, N., Higbie, J., Lester, B., Licht, P., Patton, B., Prouty, M., and Budker, D. (2011). Search for plant biomagnetism with a sensitive atomic magnetometer. J. Appl. Phys. 109, 074701, DOI:10.1063/1.3560920.10.1063/1.3560920
  3. 3. Kominis, I.K., Kornack, T.W., Allred J.C., and Romalis, M.V. (2003). A subfemtotesla multichannel atomic magnetometer. Nature 422, 596-599, DOI: 10. 1038/nature01484.
  4. 4. Patton, B., Zhivun, E., Hovde, D.C., and Budker, D. (2014). All-optical vector atomic magnetometer. Phys. Rev. Lett. 113, 013001, DOI:10.1103/PhysRevLett.113.013001.10.1103/PhysRevLett.113.013001
  5. 5. Lee, S.-K., Sauer, K.L., Seltzer, S.J., Alem, O., and Romalis, M.V. (2006). Subfemtotesla radio-frequency atomic magnetometer for detection of nuclear quadrupole resonance. Appl. Phys. Lett. 89, 214106, DOI:10.1063/1.2390643.10.1063/1.2390643
  6. 6. Balabas, M.V., Budker, D., Kitching, J., Schwindt, P.D.D., and Stalnaker, J.E. (2006). Magnetometry with millimeter-scale anti-relaxation-coated alkali-metal vapor cells. DOI:10.1364/JOSAB. 23.001001.
  7. 7. Sarkisyan, D., Bloch, D., Papoyan, A., and Ducloy, M. (2001). Sub-Doppler spectroscopy by sub-micron thin Cs vapor layer. Opt. Commun. 200, 201, DOI: 10.1016/S0030-4018(01)01604-2. 1010.1016/S0030-4018(01)01604-2
  8. 8. Hakhumyan, G.T. (2012). Optical magnetometer with submicron spatial resolution based on Rb vapors. Journal of Contemporary Physics. 47 (3), 105-112, DOI: 10.3103/ S1068337212030024.
  9. 9. Blushs, K., and Auzinsh, M. (2004). Validity of rate equations for Zeeman coherences for analysis of nonlinear interaction of atoms with broadband laser radiation. Phys. Rev. A, 69, 063806, DOI:10.1103/PhysRevA.69.063806.10.1103/PhysRevA.69.063806
  10. 10. Auzinsh, M., Ferber, R., Gahbauer, F., Jarmola, A., and Kalvans, L. (2008). F-resolved magnetooptical resonances in the D1 excitation of caesium: Experiment and theory. Phys. Rev. A, 78, 013417, DOI: 10.1103/PhysRevA.78.013417.10.1103/PhysRevA.78.013417
  11. 11. Auzinsh, M., Ferber, R., Gahbauer, F., Jarmola, A., and Kalvans, L. (2009). Nonlinear magnetooptical resonances at D1 excitation of 85Rb and 87Rb for partially resolved hyperfine F levels. Phys. Rev. A, 79, 053404, DOI: 10.1103/PhysRevA.79.053404.10.1103/PhysRevA.79.053404
  12. 12. Auzinsh, M., Berzins, A., Ferber, R., Gahbauer, F., Kalvans, L., Mozers, A., and Opalevs, D. (2012). Conversion of bright magneto-optical resonances into dark resonances at fixed laser frequency for D2 excitation of atomic rubidium. Phys. Rev. A, 85, 033418, DOI:10.1103/PhysRevA.85.033418.10.1103/PhysRevA.85.033418
  13. 13. Auzinsh, M., Ferber, R., Gahbauer, F., Jarmola, A., Kalvans, L., Papoyan, A., and Sarkisyan, D. (2010). Nonlinear magneto-optical resonances at D1 excitation of 85Rb and 87Rb in an extremely thin cell. Phys. Rev. A, 81, 033408, DOI:10.1103/PhysRevA.81.033408.10.1103/PhysRevA.81.033408
DOI: https://doi.org/10.1515/lpts-2015-0013 | Journal eISSN: 2255-8896 | Journal ISSN: 0868-8257
Language: English
Page range: 3 - 10
Published on: Jul 24, 2015
Published by: Institute of Physical Energetics
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2015 M. Auzinsh, A. Berzins, R. Ferber, F. Gahbauer, U. Kalnins, R. Rundans, D. Sarkisyan, published by Institute of Physical Energetics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.