Have a personal or library account? Click to login
The Decomposition Issue of a Time Series in the Forecasting Process Cover

The Decomposition Issue of a Time Series in the Forecasting Process

Open Access
|Jul 2017

References

  1. [1] Akaike H. A New Look at the Statistical Model Identification. I.E.E.E. Transactions on Automatic Control. No. 19, 1974.10.1109/TAC.1974.1100705
  2. [2] Barbosa R. M., Silva M. E., Fernandes M. J. Time Series Analysis of Sea-Level Records: Characterising Long-Term Variability, edited by Donner R. V., Barbosa R. M. Nonlinear Time Series Analysis in the Geosciences: Applications in Climatology, Geodynamics and Solar-Terrestrial Physics. Springer-Verlag Berlin Heidelberg, 2008, pp. 158.
  3. [3] Chatfield C. Time-series Forecasting. CRC Press. 2001, pp. 21. 10.1201/9781420036206
  4. [4] Dickey D.A., Fuller W.A. Distribution of the Estimators for Autoregressive Time Series with a Unit Root. Journal of the American Statistical Association, No. 74, 1979.10.2307/2286348
  5. [5] Hannan E.J., Quinn B.G. The Determination of the Order of an Autoregression. Journal of the Royal Statistical Society, B. 1979, No. 41.10.1111/j.2517-6161.1979.tb01072.x
  6. [6] Katznelson Y. An introduction to Harmonic Analysis, 3rd Edition. Cambridge University Press, 2004.10.1017/CBO9781139165372
  7. [7] Khandelwal I., Adhikari R., Verma G. International Conference On Computer, Communication And Convergence (ICCC 2015). Procedia Computer Science. Vol. 48, 2015, pp. 173-179.10.1016/j.procs.2015.04.167
  8. [8] de Oliveira J., Ludermir T. A hybrid evolutionary decomposition system for time series forecasting. Neurocomputing. Vol. 180, 2015, pp. 27-34.10.1016/j.neucom.2015.07.113
  9. [9] Qiu X., Ren Y., Suganthan P. N., Amaratunga G. A. J. Empirical Mode Decomposition based ensemble deep learning for load demand time series forecasting. Applied Soft Computing, Vol. 54, 2017, pp. 246-255.10.1016/j.asoc.2017.01.015
  10. [10] Schwarz G. Estimating the Dimension of a Model. Annals of Statistics, 1978, No. 6.10.1214/aos/1176344136
  11. [11] Wei L. Y. A hybrid ANFIS model based on empirical mode decomposition for stock time series forecasting. Applied Soft Computing. Vol. 42, 2016, pp. 368-376.10.1016/j.asoc.2016.01.027
  12. [12] Yaffee R., McGee M. Introduction to Time Series Analysis and Forecasting with Applications of SAS and SPSS, Academic Press, 2000, pp. 476.
Language: English
Page range: 43 - 47
Published on: Jul 22, 2017
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2017 Dariusz Grzesica, published by Nicolae Balcescu Land Forces Academy
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.