Have a personal or library account? Click to login
Chlamydia psittaci reference genes for normalisation of expression data differ depending on the culture conditions and selected time points during the chlamydial replication cycle
1. Belland R.J., Nelson D.E., Virok D., Crane D.D., Hogan D., Sturdevant D., Beatty W.L. Harland D.C.: Transcriptome analysis of chlamydial growth during IFN-gamma-mediated persistence and reactivation. Proc Natl Acad Sci 2003, 100, 15971-1596.10.1073/pnas.2535394100
5. Carvalho D.M., de Sá P.H., Castro T.L.P., Pinto A., Gil D. J. P., Bagano P., Bastos B., Costa L. F. M., Meyer R., Silva A., Azevedo V., Ramos R. T. J., Pacheco L. G. C.: Reference genes for RT-qPCR studies in Corynebacterium pseudotuberculosis identified through analysis of RNA-seq data. Antonie Van Leeuwenhoek 2014, 106, 605-614.10.1007/s10482-014-0231-3
6. Dheda K., Huggett J.F., Chang J.S., Kim L.U., Bustin S.A., Johnson M.A., Rook G.A.W., Zumla A.: The implications of using an inappropriate reference gene for real-time reverse transcription PCR data normalization. Anal Biochem 2005, 344, 141-143.10.1016/j.ab.2005.05.022
7. Douglas A.L., Hatch T.P..: Expression of the transcripts of the sigma factors and putative sigma factor regulators of Chlamydia trachomatis L2. Gene 2000, 247, 209-214.10.1016/S0378-1119(00)00094-9
8. Ferreira R., Borges V., Nunes A., Borrego M.J., Gomes J.P.: Assessment of the load and transcriptional dynamics of Chlamydia trachomatis plasmid according to strains’ tissue tropism. Microbiol Res 2013, 168, 333-339.10.1016/j.micres.2013.02.001
9. Filipe Almeida F., Borges V., Ferreira R., Borrego M.J., Gomes J.P., Mota L.J.: Polymorphisms in inc proteins and differential expression of inc genes among Chlamydia trachomatis strains correlate with invasiveness and tropism of lymphogranuloma venereum isolates. J Bacteriol 2012, 194, 6574-6585.10.1128/JB.01428-12
10. Goellner S., Schubert E., Liebler-Tenorio E., Hotzel H., Saluz H.P., Sachse K.: Transcriptional response patterns of Chlamydophila psittaci in different in vitro models of persistent infection. Infect Immun 2006, 74, 4801-4808.10.1128/IAI.01487-05
11. Kirk D.G., Palonen E., Korkeala H., Lindström M.: Evaluation of normalization reference genes for RT-qPCR analysis of spo0A and four sporulation sigma factor genes in Clostridium botulinum Group I strain ATCC 3502. Anaerobe 2014, 26, 14-19.10.1016/j.anaerobe.2013.12.003
12. Kiselev A.O., Skinner M.C., Lampe M.F.: Analysis of pmpD expression and PmpD post-translational processing during the life cycle of Chlamydia trachomatis serovars A, D, and L2. PLoS One 2009, 4, e5191.10.1371/journal.pone.0005191
13. Mannonen L., Markkula E., Puolakkainen M.: Analysis of Chlamydia pneumoniae infection in mononuclear cells by reverse transcription-PCR targeted to chlamydial gene transcripts. Med Microbiol Immunol 2011, 200, 143-54.10.1007/s00430-011-0184-3
14. Mathews S., George C., Flegg C., Stenzel D., Timms P.: Differential expression of ompA, ompB, pyk, nlpD and Cpn0585 genes between normal and interferon-gamma treated cultures of Chlamydia pneumoniae. Microb Pathog 2001, 30, 337-345.10.1006/mpat.2000.0435
15. Nicholson T.L., Chiu K., Stephens R.S.: Chlamydia trachomatis lacks an adaptive response to changes in carbon source availability. Society 2004, 72, 4286-4289.10.1128/IAI.72.7.4286-4289.2004
16. Pannekoek Y., Morelli G., Kusecek B., Morré S.A., Ossewaarde J.M., Langerak A.A., van der Ende A.: Multi locus sequence typing of Chlamydiales: clonal groupings within the obligate intracellular bacteria Chlamydia trachomatis. BMC Microbiol 2008, 8, 42.10.1186/1471-2180-8-42
18. Reiter L., Kolstø A.B., Piehler A.P.: Reference genes for quantitative, reverse-transcription PCR in Bacillus cereus group strains throughout the bacterial life cycle. J Microbiol Methods 2011, 86, 210-217.10.1016/j.mimet.2011.05.006
19. Sihto H.M., Tasara T., Stephan R., Johler S.: Validation of reference genes for normalization of qPCR mRNA expression levels in Staphylococcus aureus exposed to osmotic and lactic acid stress conditions encountered during food production and preservation. FEMS Microbiol Lett 2014, 356, 134-140.10.1111/1574-6968.12491
21. Tasara T., Stephan R.: Evaluation of housekeeping genes in Listeria monocytogenes as potential internal control references for normalizing mRNA expression levels in stress adaptation models using real-time PCR. FEMS Microbiol Lett 2007, 269, 265-272.10.1111/j.1574-6968.2007.00633.x
23. Vandesompele J., De Preter K., Pattyn F., Poppe B., Van Roy N., De Paepe A., Speleman F.: Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 2002, 3, research0034.1.10.1186/gb-2002-3-7-research0034
24. Vanrompay D., Butaye P., Van Nerom A., Ducatelle R., F. Haesebrouck: The prevalence of Chlamydia psittaci infections in Belgian commercial turkey poults. Vet Microbiol 1997, 54, 85-93.10.1016/S0378-1135(96)01224-2
25. Zhao W., Li Y., Gao P., Sun Z., Sun T., Zhang H.: Validation of reference genes for real-time quantitative PCR studies in gene expression levels of Lactobacillus casei Zhang. J Ind Microbiol Biotechnol 2011, 38, 1279-1286.10.1007/s10295-010-0906-3
26. Zhou K., Zhou L., Lim Q.E., Zou R., Stephanopoulos G., Too H.-P.: Novel reference genes for quantifying transcriptional responses of Escherichia coli to protein overexpression by quantitative PCR. BMC Mol Biol 2011, 12, 18.10.1186/1471-2199-12-18