Have a personal or library account? Click to login
Effects of Fusarium verticillioides and Lactobacillus Strains Inoculation on Growth and Antioxidant Enzymes Activity of Zea mays Plants Cover

Effects of Fusarium verticillioides and Lactobacillus Strains Inoculation on Growth and Antioxidant Enzymes Activity of Zea mays Plants

Open Access
|Dec 2017

References

  1. Aebi H. 1984. Catalase in vitro. Methods in Enzymology 105: 121–126. DOI: 10.1016/s0076-6879(84)05016-3.10.1016/s0076-6879(84)05016-3
  2. Bacon C.W., Hinton D.M., Richardson M.D. 1994. A corn seedling assay for resistance to Fusarium moniliforme. Plant Disease 78: 302–305. DOI: 10.1094/PD-78-0302.10.1094/PD-78-0302
  3. Bacon C.W., Yates I.E., Hinton D.M., Meredith F. 2001. Biological control of Fusarium moniliforme in maize. Environmental Health Perspectives 109, Supplement 2: 325–332. DOI: 10.1289/ehp.01109s2325.10.1289/ehp.01109s2325
  4. Beauchamp C., Fridovich I. 1971. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Analytical Biochemistry 44: 276–287. DOI: 10.1016/0003-2697(71)90370-8.10.1016/0003-2697(71)90370-8
  5. Chance B., Maehly A.C. 1955. Assay of catalases and peroxidases. Methods in Enzymology 2: 764–775. DOI: 10.1016/S0076-6879(55)02300-8.10.1016/S0076-6879(55)02300-8
  6. Crowley S., Mahony J., van Sinderen D. 2013. Current perspectives on antifungal lactic acid bacteria as natural bio-preservatives. Trends in Food Science and Technology 33: 93–109. DOI: 10.1016/j.tifs.2013.07.004.10.1016/j.tifs.2013.07.004
  7. Das K., Roychoudhury A. 2014. Reactive oxygen species (ROS) and response of antioxidants as ROS-scav-engers during environmental stress in plants. Frontiers in Environmental Science 2: 53. DOI: 10.3389/fenvs.2014.00053.10.3389/fenvs.2014.00053
  8. Franz C.M.A.P., Cho G-S., Holzapfel W.H., Gálvez A. 2010. Safety of lactic acid bacteria. In: Mozzi F., Raya R.R., Vignolo G.M. (Eds.), Biotechnology of Lactic Acid Bacteria: Novel Applications. Wiley-Blackwell, UK. DOI: 10.1002/9780813820866.ch19.10.1002/9780813820866.ch19
  9. Gajbhiye M.H., Kapadnis B.P. 2016. Antifungal-activity-producing lactic acid bacteria as biocontrol agents in plants. Biocontrol Science and Technology 26: 1451–1470. DOI: 10.1080/09583157.2016.1213793.10.1080/09583157.2016.1213793
  10. García-Limones C., Dorado G., Navas-Cortés J., Jiménez-Díaz R.M., Tena M. 2009. Changes in the re-dox status of chickpea roots in response to infection by Fusarium oxysporum f. sp. ciceris: apoplastic antioxidant enzyme activities and expression of oxidative stress-related genes. Plant Biology 11: 194–203. DOI: 10.1111/j.1438-8677.2008.00095.x.10.1111/j.1438-8677.2008.00095.x19228326
  11. Gherbawy Y.A., El-Tayeb M.A., Maghraby T.A., She-bany Y.M., El-Deeb B.A. 2012. Response of antioxidant enzymes and some metabolic activities in wheat to Fusarium spp. infections. Acta Agronomica Hungarica 60: 319–333. DOI: 10.1556/AAgr.60.2012.4.3.10.1556/AAgr.60.2012.4.3
  12. Guo J., Brosnan B., Furey A., Arendt E., Murphy P., Coffey A. 2012. Antifungal activity of Lactobacillus against Microsporum canis, Microsporum gypseum and Epidermophyton floccosum. Bioengineered Bugs 3(2): 104–113. DOI: 10.4161/bbug.19624.10.4161/bbug.19624335733022539027
  13. Gupta R., Srivastava S. 2014. Antifungal effect of anti-microbial peptides (AMPs LR14) derived from Lactobacillus plantarum strain LR/14 and their applications in prevention of grain spoilage. Food Microbiology 42: 1–7. DOI: 10.1016/j.fm.2014.02.005.10.1016/j.fm.2014.02.00524929709
  14. Hamed H.A., Moustafa Y.A., Abdel-Aziz S.M. 2011. In vivo efficacy of lactic acid bacteria in biological control against Fusarium oxysporum for protection of tomato plant. Life Science Journal 8: 462–468. DOI: 10.7537/marslsj080411.60.
  15. Kar M., Mishra D. 1976. Catalase, peroxidase, and polyphenoloxidase activities during rice leaf senescence. Plant Physiology 57: 315–319. DOI: 10.1104/pp.57.2.315.10.1104/pp.57.2.31554201516659474
  16. Kharazian Z.A., Jouzani G.S., Aghdasi M., Khorvash M., Zamani M, Mohammadzadeh H. 2017. Biocontrol potential of Lactobacillus strains isolated from corn silages against some plant pathogenic fungi. Biological Control 110: 33–43. DOI: 10.1016/j.bio-control.2017.04.004.10.1016/j.bio-control.2017.04.004
  17. Kıvanc M., Kıvanc S.A., Pektas S. 2014. Screening of Lactic acid bacteria for antifungal activity against fungi. Journal of Food Processing & Technology 5(3): 310, 4 p. DOI: 10.4172/2157-7110.1000310.10.4172/2157-7110.1000310
  18. Kumar M., Yadav V., Tuteja N., Johri A.K. 2009. Antioxidant enzyme activities in maize plants colonized with Piriformospora indica. Microbiology 155: 780–790. DOI: 10.1099/mic.0.019869-0.10.1099/mic.0.019869-019246749
  19. Limanska N., Ivanytsia T., Basiul O., Krylova K., Biscola V., Chobert J-M., et al. 2013. Effect of Lactobacillus plantarum on germination and growth of tomato seedlings. Acta Physiologiae Plantarum 35: 1587–1595. DOI: 10.1007/s11738-012-1200-y.10.1007/s11738-012-1200-y
  20. Mohammadi-Gholami A., Shams-Ghahfarokhi M., Kachuei R., Razzaghi-Abyaneh M. 2013. Isolation and identification of Fusarium species from maize and wheat and assessment of their ability to produce fumonisin B1. Modares Journal of Medical Sciences: Pathobiology 16: 53–64.
  21. Nakano Y., Asada K. 1981. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and Cell Physiology 22: 867–880. DOI: 10.1093/oxfordjournals.pcp.a076232.10.1093/oxfordjournals.pcp.a076232
  22. Narasimha Murthy K., Malini M., Savitha J., Srinivas C. 2012. Lactic acid bacteria (LAB) as plant growth promoting bacteria (PGPB) for the control of wilt of tomato caused by Ralstonia solanacearum. Pest Management in Horticultural Ecosystems 18: 60–65.
  23. Oliveira P.M., Zannini E., Arendt E.K. 2014. Cereal fungal infection, mycotoxins, and lactic acid bacteria mediated bioprotection: from crop farming to cereal products. Food Microbiology 37: 78–95. DOI: 10.1016/j.fm.2013.06.003.10.1016/j.fm.2013.06.00324230476
  24. Oren L., Ezrati S., Cohen D., Sharon A. 2003. Early events in the Fusarium verticillioides-maize inter-action characterized by using a green fluorescent protein-expressing transgenic isolate. Applied and Environmental Microbiology 69: 1695–1701. DOI: 10.1128/AEM.69.3.1695-1701.2003.10.1128/AEM.69.3.1695-1701.200315008112620861
  25. Patil M.M., Pal A., Anand T., Ramana K.V. 2010. Isolation and characterization of lactic acid bacteria from curd and cucumber. Indian Journal of Bio-technology 9: 166–172.
  26. Pereira P., Ibáñez S.G., Agostini E., Etcheverry M. 2011a. Effects of maize inoculation with Fusarium verticillioides and with two bacterial biocontrol agents on seedlings growth and antioxidative enzymatic activities. Applied Soil Ecology 51: 52–59. DOI: 10.1016/j.apsoil.2011.08.007.10.1016/j.apsoil.2011.08.007
  27. Pereira P., Nesci A., Castillo C., Etcheverry M. 2011b. Field studies on the relationship between Fusarium verticillioides and maize (Zea mays L.): Effect of biocontrol agents on fungal infection and toxin content of grains at harvest. International Journal of Agronomy, Article ID 486914, 7 p. DOI: 10.1155/2011/486914.10.1155/2011/486914
  28. Russo P., Arena M.P., Fiocco D., Capozzi V., Drider D., Spano G. 2017. Lactobacillus plantarum with broad antifungal activity: a promising approach to increase safety and shelf-life of cereal-based products. International Journal of Food Microbiology 247: 48–54. DOI: 10.1016/j.ijfoodmicro.2016.04.027.10.1016/j.ijfoodmicro.2016.04.02727240933
  29. Sorahinobar M., Niknam V., Ebrahimzadeh H., Soltanloo H. 2015. Differential antioxidative responses of susceptible and resistant wheat cultivars against Fusarium head blight. International Journal of Farming and Allied Sciences 4: 239–243.
  30. Torres M.A. 2010. ROS in biotic interactions. Physiologia Plantarum 138: 414–429. DOI: 10.1111/j.1399-3054.2009.01326.x.10.1111/j.1399-3054.2009.01326.x20002601
  31. Tropcheva R., Nikolova D., Evstatieva Y., Danova S. 2014. Antifungal activity and identification of Lactobacilli, isolated from traditional dairy product “katak”. Anaerobe 28: 78–84. DOI: 10.1016/j.anaerobe.2014.05.010.10.1016/j.anaerobe.2014.05.01024887637
  32. Varsha K.K., Priya S., Devendra L., Nampoothiri K.M. 2014. Control of spoilage fungi by protective lactic acid bacteria displaying probiotic properties. Applied Biochemistry and Biotechnology 172: 3402–3413. DOI: 10.1007/s12010-014-0779-4.10.1007/s12010-014-0779-424532445
  33. Virtanen T., Pihlanto A., Akkanen S., Korhonen H. 2007. Development of antioxidant activity in milk whey during fermentation with lactic acid bacteria. Journal of Applied Microbiology 102: 106–115. DOI: 10.1111/j.1365-2672.2006.03072.x.10.1111/j.1365-2672.2006.03072.x17184325
  34. Xing J., Wang G., Zhang Q., Liu X., Gu Z., Zhang H., et al. 2015. Determining antioxidant activities of lactobacilli cell-free supernatants by cellular antioxidant assay: a comparison with traditional methods. PLoS ONE 10: e0119058, 16 p. DOI: 10.1371/journal.pone.0119058.10.1371/journal.pone.0119058436624725789875
  35. Yan B., Zhao J., Fan D., Tian F., Zhang H., Chen W. 2017. Antifungal activity of Lactobacillus plantarum against Penicillium roqueforti in vitro and the preservation effect on Chinese steamed bread. Journal of Food Processing and Preservation 41(3): e12969, 9 p. DOI: 10.1111/jfpp.12969.10.1111/jfpp.12969
DOI: https://doi.org/10.1515/johr-2017-0015 | Journal eISSN: 2353-3978 | Journal ISSN: 2300-5009
Language: English
Page range: 67 - 74
Submitted on: May 1, 2017
Accepted on: Oct 1, 2017
Published on: Dec 29, 2017
Published by: National Institute of Horticultural Research
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2017 Zohreh Akhavan Kharazian, Mahnaz Aghdasi, Gholamreza Salehi Jouzan, Majid Zamani, published by National Institute of Horticultural Research
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.