Have a personal or library account? Click to login
The influence of stony soil properties on water dynamics modeled by the HYDRUS model Cover

The influence of stony soil properties on water dynamics modeled by the HYDRUS model

Open Access
|Feb 2018

References

  1. Baker, F.G., Bouma, J., 1976. Variability of hydraulic conductivity in two subsurface horizons of two silt loam soils. Soil Sci. Soc. Am. J., 40, 219–222.10.2136/sssaj1976.03615995004000020011x
  2. Beckers, E., Pichault, M., Pansak, W., Degré, A., Garré, S., 2016. Characterization of stony soil´hydraulic conductivity using laboratory and numerical experiments. Soil, 2, 421–431.10.5194/soil-2-421-2016
  3. Bouwer, H., Rice, R.C., 1984. Hydraulic Properties of Stony Vadose Zones. Ground Water, 22, 696–705.10.1111/j.1745-6584.1984.tb01438.x
  4. Brakensiek, D.L., Rawls, W.J., Stephenson, G.R., 1986. Determining the saturated hydraulic conductivity of a soil containing rock fragments. Soil Sci. Soc. Am. J., 50, 834–835.10.2136/sssaj1986.03615995005000030053x
  5. Buchter, B., Hinz, C., Flühler, H., 1994. Sample size for determination of coarse fragment content in a stony soil. Geoderma, 63, 265–275.10.1016/0016-7061(94)90068-X
  6. Coppola, A., Dragonetti, G., Comegna, A., Lamaddalena, N., Caushi, B., Haikal, M.A., Basile, A., 2013. Measuring and modeling water content in stony soils. Soil & Tillage Research, 128, 9–22.10.1016/j.still.2012.10.006
  7. EN ISO 11274:2014. Soil quality – Determination of the waterretention characteristic – Laboratory methods (ISO 11274:1998+Cor. 1:2009). European Committee for Standardization, CEN-CENELEC Management Centre, Brussels.
  8. Garcia-Gaines, R.A., Frankenstein, S., 2015. USCS and the USDA Soil Classification System: Development of a Mapping Scheme. U.S. Army Engineer Research and Development Center, Vicksburg, 46 p.10.21236/ADA614144
  9. Gardiner, B., Blennow, K., Carnus, J., Fleischer, P., Ingemarson, F., Landmann, G., Lindner, M., Marzano, M., Nicoll, B., Orazio, C., Peyron, J.L., Reviron, M.P., Schelhaas, M., Schuck, A., Spielmann, M., Usbeck, T., 2010. Destructive Storms in European Forests: Past and Forthcoming Impacts. Final Report to European Commission. – DG Environment. European Forest Institute, Joensuu, Finland, 138 p.
  10. Hlaváčiková, H., Novák, V., Orfánus, T., Danko, M., Hlavčo, J., 2014. Stony soil hydrophysical characteristics. I. Hydraulic conductivities. Acta Hydrologica Slovaca, 15, 24–34. (In Slovak with English abstract and summary.)
  11. Hlaváčiková, H., Novák, V., Holko, L., 2015. On the role of rock fragments and initial soil water content in the potential subsurface runoff formation. J. Hydrol. Hydromech., 63, 71–91.10.1515/johh-2015-0002
  12. Hlaváčiková, H., Novák, V., Šimůnek, J., 2016. The effects of rock fragment shapes and positions on modeled hydraulic conductivities of stony soils. Geoderma, 281, 39–48.10.1016/j.geoderma.2016.06.034
  13. Holko, L., Kostka, Z., Šanda, M., 2011. Assessment of frequency and areal extent of overland flow generation in a forested mountain catchment. Soil & Water Res., 6, 43–53.10.17221/33/2010-SWR
  14. Krajčí, P., Danko, M., Hlavčo, J., Kostka, Z., Holko, L., 2016. Experimental measurements for improved understanding and simulation of snowmelt events in the Western Tatra Mountains. J. Hydrol. Hydromech., 64, 316–328.10.1515/johh-2016-0038
  15. Kutílek, M., Nielsen, D.R., 1994. Soil Hydrology. Cremlingen – Destedt, Catena Verlag, 370 p.
  16. Lichner, L., 1994. Contribution to the saturated hydraulic conductivity of soils with macropores measurement. J. Hydrol. Hydromech., 42, 421–430. (In Slovak with English abstract.)
  17. Novák, V., Kňava, K., 2012. The influence of stoniness and canopy properties on soil water content distribution: simulation of water movement in forest stony soil. Eur. J. Forest Res., 131, 1727–1735.10.1007/s10342-011-0589-y
  18. Novák, V., Kňava, K., Šimůnek, J., 2011. Determining the influence of stones on hydraulic conductivity of saturated soils using numerical method. Geoderma, 161, 177–181.10.1016/j.geoderma.2010.12.016
  19. Peck, A.J., Watson, J.D., 1979. Hydraulic conductivity and flow in non-uniform soil. In: Proc. Workshop on soil physics and soil heterogeneity, CSIRO Division of Environmental Mechanics, Canberra, Australia.
  20. Poesen, J., Lavee, H., 1994. Rock fragments in top soils: significance and processes. Catena, 23, 1–28.10.1016/0341-8162(94)90050-7
  21. Puhe, J., 2003. Growth and development of the root system of Norway spruce (Picea abies) in forest stands – a review. Forest Ecology and Management, 175, 253–273.10.1016/S0378-1127(02)00134-2
  22. Ravina, I., Magier, J., 1984. Hydraulic conductivity and water retention of clay soils containing coarse fragments. Soil Sci. Soc. Am. J., 48, 736–740.10.2136/sssaj1984.03615995004800040008x
  23. Šály, R., 1978. Soil – Basic Component of Forest Production. Príroda Publ. House, Bratislava. (In Slovak.)
  24. Šimůnek, J., Šejna, M., Saito, H., Sakai, M., van Genuchten, M.T., 2013. The HYDRUS-1D Software Package for Simulating the One-Dimensional Movement of Water, Heat, and Multiple Solutes in Variably-Saturated Media, Version 4.17. Department of Environmental Sciences, University of California Riverside, Riverside, CA, USA, 308 p.
  25. Šimůnek, J., van Genuchten, M.T., Šejna, M., 2016. Recent developments and applications of the HYDRUS computer software packages. Vadose Zone J., 15, 7. DOI: 10.2136/vzj2016.04.0033.10.2136/vzj2016.04.0033
  26. Societas Pedologica Slovaca, 2014. Morphogenetic Classification System of Slovak Soils. Basal Reference Taxonomy. 2nd revised edition Bratislava: NPPC–VÚPOP Bratislava, 96 p. (In Slovak with English abstract.)
  27. Stendahl, J., Lundin, L., Nilsson, T., 2009. The stone and boulder content of Swedish forest soils. Catena, 77, 285–291.10.1016/j.catena.2009.02.011
  28. USDA, 2017. Determination of grain size distribution. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/survey/office/ssr10/tr/?cid=nrcs144p2_074845#item1b. Accessed 20 June 2017.
  29. van Genuchten, M.T., 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J., 44, 987–996.10.2136/sssaj1980.03615995004400050002x
  30. VÚPOP, 2017. Representation of stoniness categories in Slovak agricultural soils. http://www.podnemapy.sk/portal/reg_pod_infoservis/skelet/skelet.aspx. (In Slovak.)
  31. Wegehenkel, M., Wagner, A., Amoriello, T., Fleck, S., Messenburg, H., 2017. Impact of stoniness correction of soil hydraulic parameters on water balance simulations of forest plots. J. Plant Nutr. Soil Sci., 180, 71–86.10.1002/jpln.201600244
DOI: https://doi.org/10.1515/johh-2017-0052 | Journal eISSN: 1338-4333 | Journal ISSN: 0042-790X
Language: English
Page range: 181 - 188
Submitted on: May 11, 2017
Accepted on: Aug 17, 2017
Published on: Feb 6, 2018
Published by: Slovak Academy of Sciences, Institute of Hydrology; Institute of Hydrodynamics, Czech Academy of Sciences, Prague
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2018 Hana Hlaváčiková, Viliam Novák, Zdeněk Kostka, Michal Danko, Jozef Hlavčo, published by Slovak Academy of Sciences, Institute of Hydrology; Institute of Hydrodynamics, Czech Academy of Sciences, Prague
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.