Have a personal or library account? Click to login
Effect of temporal averaging of meteorological data on predictions of groundwater recharge Cover

Effect of temporal averaging of meteorological data on predictions of groundwater recharge

Open Access
|Feb 2018

References

  1. Aeschbach-Hertig, W., Gleeson, T., 2012. Regional strategies for the accelerating global problem of groundwater depletion. Nature Geosci., 5, 853–861.10.1038/ngeo1617
  2. Allan, R.P., Soden. B.J., 2008. Atmospheric warming and the amplification of precipitation extremes. Science, 321, 1481–1481.10.1126/science.1160787
  3. Allan, P., Soden, B.J., John, V.O., Ingram, W., Good, P., 2010. Current changes in tropical precipitation. Environ. Res. Lett., 5, 025205, 7 p.10.1088/1748-9326/5/2/025205
  4. Allen R.G., Pereira, L.S., Raes, D., Smith, M., 1998. Crop Evapotranspiration; Guidelines for Computing Crop Water Requirements. FAO Irrigation and Drainage Paper 56. Food and Agriculture Organization of the United Nations, Rome, Italy.
  5. ASCE, 2005. The ASCE Standardized Reference Evapotranspiration Equation. Environmental and Water Resources Institute of ASCE, Final Report. American Society of Civil Engineers, Reston, VA, USA.
  6. Assefa, K.A., Woodbury, A.D., 2013. Transient, spatially varied groundwater recharge modeling. Water Resour. Res., 49, 4593–4606.10.1002/wrcr.20332
  7. Batalha, M.S., Bezerra, C.R., Jacques, D., Barbosa, M.C., Pontedeiro, E.M., van Genuchten, M.Th., 2012. Multicomponent transport predictions of 226Ra in soil following the use of phosphogypsum. In: Proc. 4th Int. Conf. on Engineering for Waste and Biomass Valorization, WASTENG, Porto, Portugal, 6 p.
  8. Carsel R.F., Parrish. R.S., 1988. Developing joint probability distributions of soil water retention characteristics. Water Resour. Res., 4, 755–769.10.1029/WR024i005p00755
  9. Chambers, J.M., Cleveland, W.S., Kleiner, B., Tukey, P.A., 1983. Graphical Methods for Data Analysis. Wadsworth & Brooks/Cole.
  10. Ephrath, J.E., Goudriaan, J., Marani, A., 1996. Evaluation and calibration of three models for daily cycle of air temperature, radiation, wind speed and relative humidity by equations from daily characteristics. Agric. Syst., 51, 4, 377–393.10.1016/0308-521X(95)00068-G
  11. Gee, G.W., Hillel, D., 1988. Groundwater recharge in arid regions: Review and critique of estimation methods. Hydrol. Process., 2, 255–266. DOI: 10.1002/hyp.3360020306.10.1002/hyp.3360020306
  12. Gleeson, T., Befus, K.M., Jasechko, S., Luijendijk, E., Cardenas, M.B., 2015. The global volume and distribution of modern groundwater. Nature Geosci., 9, 161–167.10.1038/ngeo2590
  13. Gorelick, S.M., Zheng, C., 2015. Global change and the groundwater management challenge. Water Resour. Res., 51, 3031–3051, DOI: 10.1002/2014WR016825.10.1002/2014WR016825
  14. Harman, C.J., Rao, P.S.C., Basu, N.B., McGrath, G.S., Kumar, P., Sivapalan, M., 2011. Climate, soil, and vegetation controls on the temporal variability of vadose zone transport. Water Resour. Res., 47, W00J1310.1029/2010WR010194
  15. INMET, 2015. Instituto Nacional de Meteorologia, Ministério da Agricultura, Pecuária e Abastecimento <http://www.inmet.gov.br/portal/index.php?r=bdmep/bdmep>, Brazil.
  16. Jasechko, S., Taylor, R.G., 2015. Intensive rainfall recharges tropical groundwaters Environ. Res. Lett., 10, 124015.10.1088/1748-9326/10/12/124015
  17. Jimenez-Martinez, J., Skaggs, T.H., van Genuchten, M.Th., Candela, L., 2009. A root zone modelling approach to estimating groundwater recharge from irrigated areas. J. Hydrol., 367, 138–149.10.1016/j.jhydrol.2009.01.002
  18. Jyrkama, M.I., Sykes, J.F., 2007. The impact of climate change on spatially varying groundwater recharge in the grand river watershed (Ontario). J. Hydrol., 338, 237–250.10.1016/j.jhydrol.2007.02.036
  19. Jyrkama, M.I., Sykes, J.F., Normani, S.D., 2002. Recharge estimation for transient ground water modeling. Ground Water, 40, 638–648.10.1111/j.1745-6584.2002.tb02550.x
  20. Katul, G.G., Parlange, M.B., 1992. A Penman-Brutsaert model for wet surface evaporation. Water Resour. Res., 28, 121–126.10.1029/91WR02324
  21. Kim, J.H., Jackson, R.B., 2012. A global analysis of groundwater recharge for vegetation, climate, and soils. Vadose Zone J., 11, 1.10.2136/vzj2011.0021RA
  22. Kimball, B.A., Bellamy, L.A., 1986. Generation of diurnal solar radiation, temperature, and humidity patterns. Energy Agric., 5, 185–197.10.1016/0167-5826(86)90018-5
  23. Kuntz, D., Grathwohl, P., 2009. Comparison of steady-state and transient flow conditions on reactive transport of contaminants in the vadose zone. J. Hydrol., 369, 225–233.10.1016/j.jhydrol.2009.02.006
  24. Leterme, B., Mallants, D., Jacques, D., 2012. Sensitivity of groundwater recharge using climatic analogues and HYDRUS-1D. Hydrol. Earth Syst. Sci., 16, 2485–2497.10.5194/hess-16-2485-2012
  25. Marsaglia, G.W., Tsang, W., Wang, J., 2003. Evaluating Kolmogorov's distribution. J. Stat. Softw., 8, 18.10.18637/jss.v008.i18
  26. Marshall, J.D., Shimada, B.W., Jaffe, P.R., 2000. Effect of temporal variability in infiltration on contaminant transport in the unsaturated zone. J. Contam. Hydrol., 46, 151–161.10.1016/S0169-7722(00)00112-1
  27. Maxwell, R.M., Kollet, S.J., 2008. Interdependence of groundwater dynamics and land-energy feedbacks under climate change. Nature Geosci., 1, 665–669.10.1038/ngeo315
  28. Mileham, L., Taylor, R.G., Todd, M., Tindimugaya, C., Thompson, J., 2009. Climate change impacts on the terrestrial hydrology of a humid, equatorial catchment: sensitivity of projections to rainfall intensity. Hydrol. Sci. J., 54, 727–738.10.1623/hysj.54.4.727
  29. Neto, D.C., Chang, H.K., van Genuchten, M.Th., 2016. A mathematical view of water table fluctuations in a shallow aquifer in Brazil. Ground Water, 54, 82–91.10.1111/gwat.1232925818697
  30. Ngatcha, B.N., Mudry, J., Sarrot, R.J., 2007. Groundwater recharge from rainfall in the southern border of Lake Chad in Cameroon. World Appl. Sci. J., 2, 125–131.
  31. Owor, M., Taylor, R.G., Tindimugaya, C., Mwesigwa, D., 2009. Rainfall intensity and groundwater recharge: Empirical evidence from the Upper Nile Basin. Environ. Res. Lett., 4, 035009.10.1088/1748-9326/4/3/035009
  32. Phillips, F.M., 1994. Environmental tracers for water movement in desert soils of the American Southwest. Soil Sci. Soc. Am. J., 58, 15–24.10.2136/sssaj1994.03615995005800010003x
  33. Portmann, F.T., Döll, P., Eisner, S., Flörke, M., 2013. Impact of climate change on renewable groundwater resources: assessing the benefits of avoided greenhouse gas emissions using selected CMIP5 climate projections. Environ. Res. Lett. 8, 024023.10.1088/1748-9326/8/2/024023
  34. Saifadeen, A., Gladnyeva, R., 2012. Modeling of solute transport in the unsaturated zone using HYDRUS-1D. TVVR 12/5020, Water Resources Engineering, Lund University, Sweden.
  35. Santoni, C.S., Jobbágy, E.G., Contreras, S., 2010. Vadose zone transport in dry forests of central Argentina: Role of land use. Water Resour. Res., 46, W10541.10.1029/2009WR008784
  36. Scanlon, B.R., Healy, R.W., Cook, P.G., 2002. Choosing appropriate techniques for quantifying groundwater recharge. Hydrogeol. J., 10, 18–39.10.1007/s10040-001-0176-2
  37. Shah, T., Molden, D., Sakthivadivel, R., Seckler, D., 2000. The global groundwater situation: Overview of opportunities and challenges. IWMI Books, Rep. H025885. Int. Water Manage. Ins., Colombo, Sri Lanka.10.5337/2011.0051
  38. Shiklomanov, I.A., 1997. Comprehensive assessment of the freshwater resources of the world. World Meteor. Org., Stockholm, Sweden.
  39. Shiklomanov, I.A., Rodda, J.C., 2003. World Water Resources at the Beginning of the Twenty-First Century. Cambridge University Press, Cambridge, UK.
  40. Šimůnek, J., Šejna, M., Saito, H., Sakai, M., van Genuchten, M.Th., 2013. The HYDRUS-1D Software Package for Simulating the One-Dimensional Movement of Water, Heat, and Multiple Solutes in Variably-Saturated Media, Version 4.17. Dep. of Environmental Sciences, University of California, Riverside, California, USA.
  41. Šimůnek, J., van Genuchten, M.Th., Šejna, M., 2016. Recent developments and applications of the HYDRUS computer software packages. Vadose Zone J., 15, DOI: 10.2136/vzj2016.04.0033.10.2136/vzj2016.04.0033
  42. Soares, P.S.M., Souza, V.P., Possa, M.V., Soares. A.B., 2012. Projeto Cooperativo para Realização de Experimento de Avaliação de Desempenho de Cobertura Seca para Mitigação de Drenagem Ácida de Mina em Escala Piloto Centro de Tecnologia Mineral (CETEM). Relatório Final de Projeto Elaborado Para a Carbonífera Criciúma S.A., Rio de Janeiro, Brazil.
  43. Taylor, R.G., Todd, M.C., Kongola, L., Maurice, L., Nahozya, E., Sanga, H., MacDonald, A.M., 2013. Evidence of the dependence of groundwater resources on extreme rainfall in East Africa. Nature Climate Change, 3, 374–378.10.1038/nclimate1731
  44. van Bavel, C.H.M., 1966. Potential evaporation: The combination concept and its experimental verification. Water Resour. Res., 2, 3, 455–467.10.1029/WR002i003p00455
  45. van Bavel, C.H.M., Hillel, D.I., 1976. Calculating potential and actual evaporation from a bare soil surface by simulation of concurrent flow of water and heat. Agric. Meteorol., 17, 453–476.10.1016/0002-1571(76)90022-4
  46. van Genuchten, M.Th., 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J., 44 892–898.10.2136/sssaj1980.03615995004400050002x
  47. Veldkamp, T.I.E., Wada, Y., Aerts, J.C.J.H., Ward, P.J., 2016. Towards a global water scarcity risk assessment framework: Incorporation of probability distributions and hydro-climatic variability. Environ. Res. Lett., 11, 024006.10.1088/1748-9326/11/2/024006
  48. Vero, S.E., Ibrahim, T.G., Creamer, R.E., Grandt, J., Healy, M.G., Henry, T., Kramers, G., Richards, K.G., Fenton, O., 2014. Consequences of varied soil hydraulic and meteorological complexity on unsaturated zone time lag estimates. J. Contam. Hydrol., 170, 53–67.10.1016/j.jconhyd.2014.10.00225444116
  49. Vörösmarty, C.J., Green, P., Salisbury, J., Lammers, R.B., 2000. Global water resources: Vulnerability from climate change and population growth. Science, 289, 284–288.10.1126/science.289.5477.28410894773
  50. Wada, Y., Wisser, D., Bierkens, M.F.P., 2014. Global modeling of withdrawal, allocation and consumptive use of surface water and groundwater resources. Earth Syst. Dyn., 5, 15–40.10.5194/esd-5-15-2014
  51. Wang, P., Quinlan, P., Tartakovsky, D.M., 2009. Effects of spatio-temporal variability of precipitation on contaminant migration in the vadose zone. Geophys. Res. Lett., 36, L12404.10.1029/2009GL038347
  52. Wann, M., Yan, D., Gold, H.J., 1985. Evaluation and calibration of three models for daily cycle of air temperature. Agric. Forest Meteorol., 34, 121–128.10.1016/0168-1923(85)90013-9
  53. Yin, Y., Sykes, J.F., Normani, S.D., 2015. Impacts of spatial and temporal recharge on field-scale contaminant transport model calibration. J. Hydrol., 527, 77–87.10.1016/j.jhydrol.2015.04.040
DOI: https://doi.org/10.1515/johh-2017-0051 | Journal eISSN: 1338-4333 | Journal ISSN: 0042-790X
Language: English
Page range: 143 - 152
Submitted on: Aug 16, 2017
|
Accepted on: Nov 20, 2017
|
Published on: Feb 6, 2018
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2018 Marcia S. Batalha, Maria C. Barbosa, Boris Faybishenko, Martinus Th. van Genuchten, published by Slovak Academy of Sciences, Institute of Hydrology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.