Have a personal or library account? Click to login
Application and recalibration of soil water retention pedotransfer functions in a tropical upstream catchment: case study in Bengawan Solo, Indonesia Cover

Application and recalibration of soil water retention pedotransfer functions in a tropical upstream catchment: case study in Bengawan Solo, Indonesia

Open Access
|Jul 2017

References

  1. Abdelbaki, A.M., 2015. Using automatic calibration method for optimizing the performance of Pedotransfer functions of saturated hydraulic conductivity. Ain Shams Engineering Journal, 7, 2, 653–662.10.1016/j.asej.2015.05.012
  2. Adhikary, P.P., Chakraborty, D., Kalra, N., Sehgal, M., 2008. Pedotransfer functions for predicting the hydraulic properties of Indian soils. Australian Journal of Soil Research, 46, 5, 476.10.1071/SR07042
  3. Aina, P.O., Periaswamy, S.P., 1985. Estimating available water-holding capacity of western nigerian soils from soil texture and bulk density, using core and sieved samples. Soil Science, 140, 1, 55–58.10.1097/00010694-198507000-00007
  4. Bell, M.A., van Keulen, H., 1995. Soil Pedotransfer Functions for Four Mexican Soils. Soil Science Society of America Journal, 59, 3, 865.10.2136/sssaj1995.03615995005900030034x
  5. Beretta, A.N., Silbermann, A.V., Paladino, L., Torres, D., Bassahun, D., Musselli, R., García-Lamohte, A., 2014. Soil texture analyses using a hydrometer: modification of the Bouyoucos method. Ciencia e Investigación Agraria, 41, 2, 263–271.10.4067/S0718-16202014000200013
  6. Bittelli, M., Flury, M., 2009. Errors in water retention curves determined with pressure plates. Soil Science Society of America Journal, 73, 5, 1453.
  7. Blasone, R.S., Madsen, H., Rosbjerg, D., 2006. Comparison of parameter estimation algorithm in hydrological modelling. In: Proceedings of ModelCARE’2005. IAHS Press, Wallingford, p. 67–72.
  8. Botula, Y.D., 2013. Indirect Methods to Predict Hydrophysical Properties of Soils of Lower Congo. Ghent University, Ghent, 236 p.
  9. Botula, Y.D., Cornelis, W.M., Baert, G., Van Ranst, E., 2012. Evaluation of pedotransfer functions for predicting water retention of soils in Lower Congo (D.R. Congo). Agricultural Water Management, 111, 1–10.10.1016/j.agwat.2012.04.006
  10. Bouma, J., 1989. Using soil survey data for quantitative land evaluation. In: Advances in Soil Science. Springer, New York, pp. 177–213.10.1007/978-1-4612-3532-3_4
  11. Dijkerman, J.C., 1988. An Ustult-Aquult-Tropept catena in Sierra Leone, West Africa, II. Land qualities and land evaluation. Geoderma, 42, 1, 29–49.10.1016/0016-7061(88)90021-3
  12. Duan, Q., Sorooshian, S., Gupta, V.K., 1994. Optimal use of the SCE-UA global optimization method for calibrating watershed models. Journal of Hydrology, 158, 3–4, 265–284.10.1016/0022-1694(94)90057-4
  13. Durner, W., Lipsius, K., 2006. Determining Soil Hydraulic Properties. In: Encyclopedia of Hydrological Sciences. John Wiley & Sons.10.1002/0470848944.hsa077b
  14. Feddes, R.A., de Rooij, G.H., van Dam J.C. (Eds.), 2004. Unsaturated-Zone Modeling : Progress, Challenges and Applications. Kluwer Acad. Publ., 364 p.
  15. Fila, G., Donatelli, M., Bellocchi, G., 2006. PTFIndicator: An IRENE_DLL-based application to evaluate estimates from pedotransfer functions by integrated indices. Environmental Modelling & Software, 21, 1, 107–110.10.1016/j.envsoft.2005.01.001
  16. Gee, G.W., Bauder, J.W., 1986. Particle-size analysis. In: Klute, A. (Ed.): Methods of Soil Analysis. Part 1: Physical and Mineralogical Methods. Soil Science Society of America, American Society of Agronomy, Madison, WI, pp. 383–411.10.2136/sssabookser5.1.2ed.c15
  17. Grossman, R.B., Reinsch, T.G., 2002. The solid phase. In: Dane, J.H., Topp, C.G. (Eds.): Methods of Soil Analysis. Part 4: Physical Methods. Soil Science Society of America, American Society of Agronomy, Madison, WI, pp. 201–228.
  18. Hartemink, A.E., 2002. Soil science in tropical and temperate regions-some differences and similarities. Advances in Agronomy, 77, 269–292.10.1016/S0065-2113(02)77016-8
  19. Hodnett, M.G., da Silva, L.P., da Rocha, H.R., Cruz Senna, R., 1995. Seasonal soil water storage changes beneath central Amazonian rainforest and pasture: Journal of Hydrology, 170, 1–4, 233–254.10.1016/0022-1694(94)02672-X
  20. Hodnett, M.G., Tomasella, J., 2002. Marked differences between van Genuchten soil water-retention parameters for temperate and tropical soils: a new water-retention pedotransfer functions developed for tropical soils. Geoderma, 108, 3, 155–180.10.1016/S0016-7061(02)00105-2
  21. Hopmans, J.W., Schoups, G., 2006. Soil Water Flow at Different Spatial Scales. In: Encyclopedia of Hydrological Sciences: John Wiley & Sons.10.1002/0470848944.hsa070
  22. Lal, R., 1979. Physical properties and moisture retention characteristics of some nigerian soils. Geoderma, 21, 3, 209–223.10.1016/0016-7061(78)90028-9
  23. Lavigne, F., Gunnell, Y., 2006. Land cover change and abrupt environmental impacts on Javan volcanoes, Indonesia: a long-term perspective on recent events. Regional Environmental Change, 6, 1–2, 86–100.10.1007/s10113-005-0009-2
  24. Maeda, T., Takenaka, H., Warkentin, B.P., 1977. Physical properties of allophane soils. Advances in Agronomy, 29, C, 229–264.10.1016/S0065-2113(08)60220-5
  25. Manrique, L.A., Jones, C.A., Dyke, P.T., 1991. Predicting soil water retention characteristics from soil physical and chemical properties. Communications in Soil Science and Plant Analysis, 22, 17–18, 1847–1860.10.1080/00103629109368540
  26. McBratney, A.B., Minasny, B., Cattle, S.R., Vervoort, R.W., 2002. From pedotransfer functions to soil inference systems. Geoderma, 109, 1–2, 41–73.10.1016/S0016-7061(02)00139-8
  27. Minasny, B., Hartemink, A.E., 2011. Predicting soil properties in the tropics. Earth-Science Reviews, 106, 1, 52–62.10.1016/j.earscirev.2011.01.005
  28. Nelson, D.W., Sommers, L.E., 1996. Total carbon, organic carbon, and organic matter. In: Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H. (Eds.): Methods of Soil Analysis. Part 3: Chemical Methods. Soil Science Society of America, American Society of Agronomy, Madison, WI, pp. 961–1010.10.2136/sssabookser5.3.c34
  29. Nguyen, P.M., Van Le, K., Botula, Y.-D., Cornelis, W.M., 2015. Evaluation of soil water retention pedotransfer functions for Vietnamese Mekong Delta soils. Agricultural Water Management, 158, 126–138.10.1016/j.agwat.2015.04.011
  30. Nugroho, P., 2015. Model soil water assessment tool (SWAT) untuk prediksi laju erosi dan sedimentasi sub das Keduang Kabupaten Wonogiri (SWAT model for erosion rate prediction in the Keduang sub catchment, Wonogiri residence). Universitas Muhammadiyah, Surakarta, 85 p.
  31. Oldhoff, R.J.J., 2015. Local and catchment scale validation of soil hydraulic pedotransfer functions for an Indonesian watershed. University of Twente, Enschede, 96 p.
  32. Pachepsky, Y., Rawls, W.J., (Eds.), 2004. Development of Pedotransfer Functions in Soil Hydrology. Elsevier, 542 p.
  33. Pachepsky, Y., Schaap, M.G., 2004. Data mining and exploration techniques. In: Development of Pedotransfer Functions in Soil Hydrology. Elsevier, pp. 21–32.10.1016/S0166-2481(04)30002-4
  34. Pidgeon, J.D., 1972. The measurement and prediction of available water capacity of Ferralitic soils in Uganda. Jurnal of Soil Science, 23, 431–441.10.1111/j.1365-2389.1972.tb01674.x
  35. Rayment, G.E., Higginson, F.R., 1992. Australian laboratory handbook of soil and water chemical methods. Australian soil and land survey handbook. Inkata Press, Melbourne.
  36. Richards, L.A., 1947. Pressure membrane apparatus, construction and use. Agric. Eng., 28, 451–454.
  37. Richards, L.A., Fireman, M., 1943. Pressure-plate apparatus for measuring moisture sorption and transmission by soils. Soil Science, 56, 6, 395–404.10.1097/00010694-194312000-00001
  38. Suhardjo, H., Soepraptohardjo, M., 1981. Indonesian soil units and sub units for survey and mapping of transmigration areas. Bogor, Balai penelitian tanah, Departemen Pertanian Republik Indonesia (Soil Research Centre of the Ministry of Agriculture, Republic of Indonesia), 24 p.
  39. Sulaeman, Y., Minasny, B., McBratney, A.B., Sarwani, M., Sutandi, A., 2013. Harmonizing legacy soil data for digital soil mapping in Indonesia. Geoderma, 192, 1, 77–85.10.1016/j.geoderma.2012.08.005
  40. Tan, K.H., 2008. Soils in the humid tropics and monsoon region of Indonesia. CRC Press, 584 p.10.1201/9781420069105
  41. Tomasella, J., Hodnett, M.G., 1998. Estimating soil water retention characteristics from limited data in Brazilian Amazonia. Soil Science, 163, 190–202.10.1097/00010694-199803000-00003
  42. Tomasella, J., Hodnett, M., 2004. Pedotransfer functions for tropical soils. In: Development of Pedotransfer Functions in Soil Hydrology. Elsevier, pp. 415–429.10.1016/S0166-2481(04)30021-8
  43. Tomasella, J., Hodnett, M.G., Rossato, L., 2000. Pedotransfer functions for the estimation of soil water retention in Brazilian soils. Soil Science Society of America Journal, 64, 1, 327.10.2136/sssaj2000.641327x
  44. Tranter, G., McBratney, A.B., Minasny, B., 2009. Using distance metrics to determine the appropriate domain of pedotransfer function predictions. Geoderma, 149, 3–4, 421–425.10.1016/j.geoderma.2009.01.006
  45. van Bemmelen, R.W., 1949. Geology of Indonesia. Vol. IA general geology. SDU, The Hague, 732 p.
  46. van den Berg, M., Klamt, E., van Reeuwijk, L.P., Sombroek, W.G., 1997. Pedotransfer functions for the estimation of moisture retention characteristics of Ferralsols and related soils. Geoderma, 78, 3–4, 161–180.10.1016/S0016-7061(97)00045-1
  47. van Engelen, V.W.P., Ting-tiang, W., 1995. Global and national soils and terrain digital databases (SOTER) - Procedures manual: no. 74 (rev. 1), 122 p.
  48. van Genuchten, M.T., 1980. A closed-form equation for predicting the hydraulic onductivity of unsaturated soils. Soil Science Society of America Journal, 44, 5, 892–898.10.2136/sssaj1980.03615995004400050002x
  49. van Genuchten, M.T., Leij, F.J., Yates, S.R., 1991. The RETC code for quantifying the hydraulic functions of unsaturated soils, version 1.0. Riverside, 93 p.
  50. Vernimmen, R., BMKG, 2013. Joint cooperation programme component D1: droughts early warning system. 36 p.
  51. Wösten, J.H.M., Pachepsky, Y.A., Rawls, W.J., 2001. Pedotransfer functions: bridging the gap between available basic soil data and missing soil hydraulic characteristics. Journal of Hydrology, 251, 3–4, 123–150.10.1016/S0022-1694(01)00464-4
  52. Wösten, J.H.M., Verzandvoort, S.J.E., Leenaars, J.G.B., Hoogland, T., Wesseling, J.G., 2013. Soil hydraulic information for river basin studies in semi-arid regions. Geoderma, 195–196, 79–86.10.1016/j.geoderma.2012.11.021
DOI: https://doi.org/10.1515/johh-2017-0020 | Journal eISSN: 1338-4333 | Journal ISSN: 0042-790X
Language: English
Page range: 307 - 320
Submitted on: Jul 12, 2016
|
Accepted on: Mar 1, 2017
|
Published on: Jul 22, 2017
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2017 Andry Rustanto, Martijn J. Booij, Henk Wösten, Arjen Y. Hoekstra, published by Slovak Academy of Sciences, Institute of Hydrology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.