Have a personal or library account? Click to login
Investigating the impact of surface soil moisture assimilation on state and parameter estimation in SWAT model based on the ensemble Kalman filter in upper Huai River basin Cover

Investigating the impact of surface soil moisture assimilation on state and parameter estimation in SWAT model based on the ensemble Kalman filter in upper Huai River basin

By: Yongwei Liu,  Wen Wang and  Yiming Hu  
Open Access
|Mar 2017

References

  1. Abbaspour, K., Johnson, C., Van Genuchten, M.T., 2004. Estimating uncertain flow and transport parameters using a sequential uncertainty fitting procedure. Vadose Zone Journal, 3, 4, 1340–1352.10.2136/vzj2004.1340
  2. Aksoy, A., Zhang, F., Nielsen-Gammon, J.W., 2006. Ensemble-based simultaneous state and parameter estimation in a two-dimensional sea-breeze model. Monthly Weather Review, 134, 10, 2951–2970.10.1175/MWR3224.1
  3. Alvarez-Garreton, C., Ryu, D., Western, A., Crow, W.T., Robertson, D.E., 2014. The impacts of assimilating satellite soil moisture into a rainfall–runoff model in a semi-arid catchment. Journal of Hydrology, 519, 2763–2774.10.1016/j.jhydrol.2014.07.041
  4. Alvarez-Garreton, C., Ryu, D., Western, A., Su, C.H., Crow, W.T., Robertson, D.E., Leahy, C., 2015. Improving operational flood ensemble prediction by the assimilation of satellite soil moisture: comparison between lumped and semi-distributed schemes. Hydrology and Earth System Sciences Discussions, 11, 9, 10635–10681.10.5194/hessd-11-10635-2014
  5. Aubert, D., Loumagne, C., Oudin, L., 2003. Sequential assimilation of soil moisture and streamflow data in a conceptual rainfall–runoff model. Journal of Hydrology, 280, 1, 145–161.10.1016/S0022-1694(03)00229-4
  6. Barre, H.M.J., Duesmann, B., Kerr, Y.H., 2008. SMOS: The Mission and the System. Geoscience and Remote Sensing, IEEE Transactions on 46(3): 587–593.10.1109/TGRS.2008.916264
  7. Brocca, L., Moramarco, T., Melone, F., Wagner, W., Hasenauer, S., Hahn, S., 2012. Assimilation of Surface-and Root-Zone ASCAT Soil Moisture Products Into Rainfall–Runoff Modeling. Geoscience and Remote Sensing, IEEE Transactions on 50(7): 2542–2555.10.1109/TGRS.2011.2177468
  8. Brocca, L., Moramarco, T., Dorigo, W., Wagner, W., 2013. Assimilation of satellite soil moisture data into rainfall-runoff modelling for several catchments worldwide. Geoscience and Remote Sensing Symposium (IGARSS), 2013 IEEE International, IEEE.10.1109/IGARSS.2013.6723273
  9. Chen, F., Crow, W.T., Starks, P.J., Moriasi, D.N., 2011. Improving hydrologic predictions of a catchment model via assimilation of surface soil moisture. Advances in Water Resources, 34, 4, 526–536.10.1016/j.advwatres.2011.01.011
  10. Chen, W., Huang, C., Shen, H., Li, X., 2015. Comparison of ensemble-based state and parameter estimation methods for soil moisture data assimilation. Advances in Water Resources, 86, 425–438.10.1016/j.advwatres.2015.08.003
  11. Clark, M.P., Rupp, D.E., Woods, R.A., Zheng, X., Ibbitt, R.P., Slater, A.G., Schmidt, J., Uddstrom, M.J., 2008. Hydrological data assimilation with the ensemble Kalman filter: Use of streamflow observations to update states in a distributed hydrological model. Advances in Water Resources, 31, 10, 1309–1324.10.1016/j.advwatres.2008.06.005
  12. Crosson, W.L., Laymon, C.A., Inguva, R., Schamschula, M.P., 2002. Assimilating remote sensing data in a surface flux–soil moisture model. Hydrological processes, 16, 8, 1645–1662.10.1002/hyp.1051
  13. Crow, W.T., Ryu, D., 2009. A new data assimilation approach for improving runoff prediction using remotely-sensed soil moisture retrievals. Hydrology and Earth System Sciences, 13, 1, 1–16.10.5194/hess-13-1-2009
  14. Crow, W.T., Wood, E.F., 2003. The assimilation of remotely sensed soil brightness temperature imagery into a land surface model using ensemble Kalman filtering: A case study based on ESTAR measurements during SGP97. Advances in Water Resources, 26, 2, 137–149.10.1016/S0309-1708(02)00088-X
  15. Das, N.N., Entekhabi, D., Njoku, E.G., 2011. An Algorithm for Merging SMAP Radiometer and Radar Data for High-Resolution Soil-Moisture Retrieval. Geoscience and Remote Sensing, IEEE Transactions on 49, 5, 1504–1512.10.1109/TGRS.2010.2089526
  16. Das, N.N., Entekhabi, D., Njoku, E.G., Shi, J.J. C., Johnson, J.T., Colliander, A., 2014. Tests of the SMAP Combined Radar and Radiometer Algorithm Using Airborne Field Campaign Observations and Simulated Data. Geoscience and Remote Sensing, IEEE Transactions on 52, 4, 2018–2028.10.1109/TGRS.2013.2257605
  17. Entekhabi, D., Njoku, E.G., O'Neill, P.E., Kellogg, K.H., Crow, W.T., Edelstein, W.N., Entin, J.K., Goodman, S.D., Jackson, T.J., Johnson, J., Kimball, J., Piepmeier, J.R., Koster, R.D., Martin, N., McDonald, K.C., Moghaddam, M., Moran, S., Reichle, R., Shi, J.C., Spencer, M.W., Thurman, S.W., Leung, T., Van Zyl, J. 2010. The Soil Moisture Active Passive (SMAP) Mission. Proceedings of the IEEE 98, 5, 704–716.
  18. Evensen, G., 1994. Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. Journal of Geophysical Research, 99, 10143–10162.10.1029/94JC00572
  19. Han, E., Merwade, V., Heathman, G.C., 2012. Implementation of surface soil moisture data assimilation with watershed scale distributed hydrological model. Journal of Hydrology, 416–417, 98–117.10.1016/j.jhydrol.2011.11.039
  20. Heathman, G.C., Starks, P.J., Ahuja, L.R., Jackson, T.J., 2003. Assimilation of surface soil moisture to estimate profile soil water content. Journal of Hydrology, 279, 1–4, 1–17.10.1016/S0022-1694(03)00088-X
  21. Lü, H., Yu, Z., Zhu, Y., Drake, S., Hao, Z. and Sudicky, E.A., 2011. Dual state-parameter estimation of root zone soil moisture by optimal parameter estimation and extended Kalman filter data assimilation. Advances in Water Resources, 34, 3, 395–406.10.1016/j.advwatres.2010.12.005
  22. Laiolo, P., Gabellani, S., Campo, L., Silvestro, F, Delogu, F, Rudari, R., Pulvirenti, L, Boni, G, Fascetti, F., Pierdicca, N., 2015. Impact of different satellite soil moisture products on the predictions of a continuous distributed hydrological model. International Journal of Applied Earth Observation and Geoinformation.10.1016/j.jag.2015.06.002
  23. Lee, H., Seo, D.-J., Koren, V., 2011. Assimilation of streamflow and in situ soil moisture data into operational distributed hydrologic models: Effects of uncertainties in the data and initial model soil moisture states. Advances in Water Resources, 34, 12, 1597–1615.10.1016/j.advwatres.2011.08.012
  24. Lievens, H., Tomer, S.K., Al Bitar, A., De Lannoy, G.J.M., Drusch, M., Dumedah, G., Hendricks Franssen, H.J. Hendricks, Kerr, Y.H., Martens, B., Pan, M., Roundy J.K., Vereecken, H., Walker, J.P., Wood E.F., Verhoest, N.E.C., Pauwels, V.R.N., 2015. SMOS soil moisture assimilation for improved hydrologic simulation in the Murray Darling Basin, Australia. Remote sensing of environment, 168, 146–162.10.1016/j.rse.2015.06.025
  25. Lunt, I., Hubbard, S., Rubin, Y., 2005. Soil moisture content estimation using ground-penetrating radar reflection data. Journal of Hydrology, 307, 1, 254–269.10.1016/j.jhydrol.2004.10.014
  26. Massari, C., Brocca, L., Tarpanelli, A., Moramarco, T., 2015. Data Assimilation of Satellite Soil Moisture into Rainfall-Runoff Modelling: A Complex Recipe? Remote Sensing, 7, 9, 11403–11433.10.3390/rs70911403
  27. McKay, M.D., Beckman, R.J., Conover, W.J., 1979. Comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics, 21, 2, 239–245.10.1080/00401706.1979.10489755
  28. Monteith, J.L., 1965. Evaporation and the environment. In: 19th Symposia of the Society for Experimental Biology: The state and movement of water in living organisms. Cambridge Univ. Press, London, pp. 205–234.
  29. Moradkhani, H., Sorooshian, S., Gupta, H.V., Houser, P.R., 2005. Dual state-parameter estimation of hydrological models using ensemble Kalman filter. Advances in Water Resources, 28, 2, 135–147.10.1016/j.advwatres.2004.09.002
  30. Morris, M.D., 1991. Factorial sampling plans for preliminary computational experiments. Technometrics, 33, 2, 161–174.10.1080/00401706.1991.10484804
  31. Nash, J., Sutcliffe, J., 1970. River flow forecasting through conceptual models part I—A discussion of principles. Journal of Hydrology, 10, 3, 282–290.10.1016/0022-1694(70)90255-6
  32. Neitsch, S.L., Arnold, J.G., Kiniry, J.R., Williams, J.R., 2011. Soil and Water Assessment Tool Theoretical Documentation Version 2009. TR-406, Texas Water Resources Institute Technical Report No.406. Texax A&M University. (available at http://swat.tamu.edu/media/99192/swat2009-theory.pdf)
  33. Njoku, E.G., Jackson, T.J., Lakshmi, V., Chan, T.K., Nghiem, S.V., 2003. Soil moisture retrieval from AMSR-E. Geoscience and Remote Sensing, IEEE Transactions on 41, 2, 215–229.10.1109/TGRS.2002.808243
  34. Reichle, R.H., Koster, R.D., 2004. Bias reduction in short records of satellite soil moisture. Geophysical Research Letters, 31, 19. DOI:10.1029/2004GL020938.10.1029/2004GL020938
  35. Reichle, R.H., Crow, W.T., Keppenne, C.L., 2008. An adaptive ensemble Kalman filter for soil moisture data assimilation. Water resources research, 44, 3.10.1029/2007WR006357
  36. Smith, P.J., 2010. Joint state and parameter estimation using data assimilation with application to morphodynamic modelling. University of Reading, Reading.
  37. Troch, P.A., Paniconi, C., McLaughlin, D., 2003. Catchment-scale hydrological modeling and data assimilation. Advances in Water Resources, 26, 2, 131–135.10.1016/S0309-1708(02)00087-8
  38. Walker, J.P., Willgoose, G.R., Kalma, J.D., 2001. One-dimensional soil moisture profile retrieval by assimilation of near-surface observations: A comparison of retrieval algorithms. Advances in Water Resources, 24, 6, 631–650.10.1016/S0309-1708(00)00043-9
  39. Wang, D., Chen, Y., Cai, X., 2009. State and parameter estimation of hydrologic models using the constrained ensemble Kalman filter. Water Resources Research, 45, 11.10.1029/2008WR007401
  40. Williams, J., 1969. Flood routing with variable travel time or variable storage coefficients. Trans. ASAE, 12, 1, 100–103.10.13031/2013.38772
  41. Xie, X., Zhang, D., 2010. Data assimilation for distributed hydrological catchment modeling via ensemble Kalman filter. Advances in Water Resources, 33, 6, 678–690.10.1016/j.advwatres.2010.03.012
  42. Xie, X., Zhang, D., 2013. A partitioned update scheme for state-parameter estimation of distributed hydrologic models based on the ensemble Kalman filter. Water Resources Research, 49, 11, 7350–7365.10.1002/2012WR012853
  43. Xie, X., Meng, S., Liang, S., Yao, Y., 2014. Improving streamflow predictions at ungauged locations with real-time updating: application of an EnKF-based state-parameter estimation strategy. Hydrology and Earth System Sciences, 18, 10, 3923–3936.10.5194/hess-18-3923-2014
  44. Yang, X., Delsole, T., 2009. Using the ensemble Kalman filter to estimate multiplicative model parameters. Tellus A 61, 5, 601–609.10.1111/j.1600-0870.2009.00407.x
  45. Yu, Z., Liu, D., Lü, H., Fu, X., Xiang, L., Zhu, Y., 2012. A multi-layer soil moisture data assimilation using support vector machines and ensemble particle filter. Journal of Hydrology, 475, 53–64.10.1016/j.jhydrol.2012.08.034
  46. Yu, Z., Fu, X., Luo, L., Lü, H., Ju, Q., Liu, D., Kalin, A.D., Huang, D., Yang, C., Zhao, L., 2014. One-dimensional soil temperature simulation with Common Land Model by assimilating in situ observations and MODIS LST with the ensemble particle filter. Water Resources Research, 50, 8, 6950–6965.10.1002/2012WR013473
DOI: https://doi.org/10.1515/johh-2017-0011 | Journal eISSN: 1338-4333 | Journal ISSN: 0042-790X
Language: English
Page range: 123 - 133
Submitted on: Mar 7, 2016
Accepted on: Aug 7, 2016
Published on: Mar 20, 2017
Published by: Slovak Academy of Sciences, Institute of Hydrology; Institute of Hydrodynamics, Czech Academy of Sciences, Prague
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2017 Yongwei Liu, Wen Wang, Yiming Hu, published by Slovak Academy of Sciences, Institute of Hydrology; Institute of Hydrodynamics, Czech Academy of Sciences, Prague
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.