Have a personal or library account? Click to login
Water infiltration in an aquifer recharge basin affected by temperature and air entrapment Cover

Water infiltration in an aquifer recharge basin affected by temperature and air entrapment

Open Access
|Jul 2017

References

  1. Al-Muttair, F.F., Al-Turbak, A.S., 1991. Modeling of infiltration from an artificial recharge basin with a decreasing ponded depth. J. King Saud Univ. Eng. Sci., 3, 89–100.10.1016/S1018-3639(18)30539-7
  2. Bouwer, H., 1999. Artificial recharge of groundwater: systems, design, and management. In: Hydraulic Design Handbook. Larry W. Mays, New York.
  3. Bouwer, H., 2002. Artificial recharge of groundwater: hydrogeology and engineering. Hydrogeol. J., 10, 121–142. DOI: 10.1007/s10040-001-0182-4.10.1007/s10040-001-0182-4
  4. Braud, I., Dantas-Antonino, A.C., Vauclin, M., Thony, J.L., Ruelle, P., 1995. A simple soil-plant-atmosphere transfer model (SiSPAT) development and field verification. J. Hydrol., 166, 213–250.10.1016/0022-1694(94)05085-C
  5. Constantz, J., 1982. Temperature dependence of unsaturated hydraulic conductivity of two soils. Soil Sci. Soc. Am. J., 46, 466–470.10.2136/sssaj1982.03615995004600030005x
  6. Constantz, J., Thomas, C.L., Zellweger, G., 1994. Influence of diurnal variations in stream temperature on streamflow loss and groundwater recharge. Water Resour. Res., 30, 3253–3264.10.1029/94WR01968
  7. Di Prima, S., Lassabatere, L., Bagarello, V., Iovino, M., Angulo-Jaramillo, R., 2016. Testing a new automated single ring infiltrometer for Beerkan infiltration experiments. Geoderma, 262, 20–34. http://dx.doi.org/10.1016/j.geoderma.2015.08.00610.1016/j.geoderma.2015.08.006
  8. Dohnal, M., Jelinkova, V., Snehota, M., Dusek, J., Brezina, J., 2013. Tree-dimensional numerical analysis of water flow affected by entrapped air: Application of noninvasive imaging techniques. Vadose Zone J., 12. DOI: 10.2136/vzj2012.0078.10.2136/vzj2012.0078
  9. Faybishenko, B.A., 1995. Hydraulic behavior of quasi-saturated soils in the presence of entrapped air: laboratory experiments. Water Resour. Res., 31, 2421–2435. DOI: 10.1029/95WR01654.10.1029/95WR01654
  10. Gette-Bouvarot, M., Mermillod-Blondin, F., Angulo-Jaramillo, R., Delolme, C., Lemoine, D., Lassabatere, L., Loizeau, S., Volatier, L., 2014. Coupling hydraulic and biological measurements highlights the key influence of algal biofilm on infiltration basin performance. Ecohydrology, 7, 950–964.10.1002/eco.1421
  11. Goutaland, D., Winiarski, T., Lassabatere, L., Dubé, J.S., Angulo-Jaramillo, R., 2013. Sedimentary and hydraulic characterization of a heterogeneous glaciofluvial deposit: Application to the modeling of unsaturated flow. Eng. Geol., 166, 127–139. http://dx.doi.org/10.1016/j.enggeo.2013.09.00610.1016/j.enggeo.2013.09.006
  12. Greskowiak, J., Prommer, H., Massmann, G., Johnston, C.D., Nützmann, G., Pekdeger, A., 2005. The impact of variably saturated conditions on hydrogeochemical changes during artificial recharge of groundwater. Appl. Geochem., 20, 1409–1426. DOI: 10.1016/j.apgeochem.2005.03.002.10.1016/j.apgeochem.2005.03.002
  13. Haverkamp, R., Ross, P.J., Smettem, K.R.J., Parlange, J.Y., 1994. 3-Dimensional analysis of infiltration from the disc infiltrometer. 2. Physically-based infiltration equation. Water Resour. Res., 30, 2931–2935.10.1029/94WR01788
  14. Heilweil, V.M., Solomon, D.K., Ortiz, G., 2009. Silt and gas accumulation beneath an artificial recharge spreading basin, Southwestern Utah, U.S.A. Boletin Geologico y Minero, 120, 185–196.
  15. Hillel, D., 1998. Environmental Soil Physics: Fundamentals, Applications, and Environmental Considerations. Academic Press, San Diego, USA, 771 p.
  16. Jaynes, D.B., 1990. Temperature variations effect on field-measured infiltration. Soil Sci. Soc. Am. J., 54, 305–312.10.2136/sssaj1990.03615995005400020002x
  17. Joekar-Niasar, V., Doster, F., Armstrong, R.T., Wildenschild, D., Celia, M.A., 2013. Trapping and hysteresis in two-phase flow in porous media: A pore-network study. Water Resour. Res., 49, 4244–4256. DOI:10.1002/wrcr.20313.10.1002/wrcr.20313
  18. Kildsgaard, J., Engesgaard, P., 2001. Numerical analysis of biological clogging in two-dimensional sand box experiments. J. Contam. Hydrol., 50, 261–285. DOI: 10.1016/S0169-7722(01)00109-7.10.1016/S0169-7722(01)00109-7
  19. Köhne, J.M., Köhne, S., Šimůnek, J., 2009a. A review of model applications for structured soils: a) Water flow and tracer transport. J. Contam. Hydrol., 104, 4–35.10.1016/j.jconhyd.2008.10.00219012994
  20. Köhne, J.M., Köhne, S., Šimůnek, J., 2009b. A review of model applications for structured soils: b) Pesticide transport. J. Contam. Hydrol., 104, 36–60.10.1016/j.jconhyd.2008.10.00319012993
  21. Lassabatere, L., Angulo-Jaramillo, R., Soria Ugalde, J.M., Cuenca, R., Braud, I., Haverkamp, R., 2006. Beerkan estimation of soil transfer parameters through infiltration experiments- BEST. Soil Sci. Soc. Am. J., 70, 521–532.10.2136/sssaj2005.0026
  22. Lassabatere, L., Angulo-Jaramillo, R., Soria-Ugalde, J.M., Simunek, J., Haverkamp, R., 2009. Numerical evaluation of a set of analytical infiltration equations. Water Resour. Res., 45.10.1029/2009WR007941
  23. Lassabatere, L., Angulo-Jaramillo, R., Goutaland, D., Letellier, L., Gaudet, J.P., Winiarski, T., Delolme, C., 2010. Effect of the settlement of sediments on water infiltration in two urban infiltration basins. Geoderma, 156, 316–325. http://dx.doi.org/10.1016/j.geoderma.2010.02.03110.1016/j.geoderma.2010.02.031
  24. Lin, C., Greenwald, D., Banin, A., 2003. Temperature dependence of infiltration rate during large scale water recharge into soils. Soil Sci. Soc. Am. J., 67, 487–493.10.2136/sssaj2003.4870
  25. Loizeau, S., 2013. Amélioration de la compréhension des fonctionnements hydrodynamiques du champ captant de Crépieux-Charmy. [Improvement of the understanding of hydrodynamic functioning of the Crépeiux-Chamy well field]. Université de Grenoble, Grenoble, 220 p.
  26. Marinas, M., Smith, J., Roy, J., 2009. The effects of disconnect entrapped air on hydraulic conductivity in the presence of water table fluctuations. In: AGU Spring Meeting Abstracts.
  27. Michot, D., Benderitter, Y., Dorigny, A., Nicoullaud, B., King, D., Tabbagh, A., 2003. Spatial and temporal monitoring of soil water content with an irrigated corn crop cover using surface electrical resistivity tomography. Water Resour. Res., 39, 1138. DOI:10.1029/2002WR001581.10.1029/2002WR001581
  28. Mualem, Y., 1976. A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour. Res., 12, 513–522.10.1029/WR012i003p00513
  29. Muskat, M., 1937. The Flow of Homogeneous Fluids Through Porous Media. Mac Graw Hill, New York.10.1063/1.1710292
  30. Nasta, P., Lassabatere, L., Kandelous, M.M., Simunek, J., Angulo-Jaramillo, R., 2012. Analysis of the role of tortuosity and infiltration constants in the Beerkan method. Soil Sci. Soc. Am. J., 76, 1999–2005.10.2136/sssaj2012.0117n
  31. Okubo, T., Matsumoto, J., 1979. Effect of infiltration rate on biological clogging and water quality changes during artificial recharge. Water Resour. Res., 15, 1536–1542. DOI: 10.1029/WR015i006p01536.10.1029/WR015i006p01536
  32. Rai, S.N., Singh, R.N., 1985. Water table fluctuations in response to time varying recharge. (Proceedings of the Jerusalem Symposium Scientific Basis for Water Resources Management). IAHS Publ. no. 153. IAHS Press, Wallingford, pp. 287–294.
  33. Richards, L.A., 1931. Capillary conduction of liquids through porous mediums. J. Appl. Phys., 1, 318–333. DOI: 10.1063/1.1745010.10.1063/1.1745010
  34. Schuh, W.M., 1988. In-situ method for monitoring layered hydraulic impedance development during artificial recharge with turbid water. J. Hydrol., 101, 173–189. DOI: 10.1016/0022-1694(88)90034-0.10.1016/0022-1694(88)90034-0
  35. Schuh, W.M., 1990. Seasonal variation of clogging of an artificial recharge basin in a northern climate. J. Hydrol., 121, 193–215. DOI: 10.1016/0022-1694(90)90232-M.10.1016/0022-1694(90)90232-M
  36. Seymour, R.M., 2000. Air entrapment and consolidation occurring with saturated hydraulic conductivity changes with intermittent wetting. Irrig. Sci., 20, 9–14.10.1007/PL00006716
  37. Šimůnek, J., Jarvis, N.J., van Genuchten, M.T., Gärdenäs, A., 2003. Review and comparison of models for describing nonequilibrium and preferential flow and transport in the vadose zone. J. Hydrol., 272, 14–35.10.1016/S0022-1694(02)00252-4
  38. Sněhota, M., Císlerová, M., Gao Amin, M.H., Hall, L.D., 2010. Tracing the entrapped air in heterogeneous soil by means of magnetic resonance imaging. Vadose Zone J., 9, 373–384. DOI: 10.2136/vzj2009.0103.10.2136/vzj2009.0103
  39. Stephens, D.B., Hsu, K.-C., Prieksat, M.A., Ankeny, M.D., Blandford, N., Roth, T.L., Kelsey, J.A., Whitworth, J.R., 1998. A comparison of estimated and calculated effective porosity. Hydrogeol. J., 6, 156–165.10.1007/s100400050141
  40. Tu, Y.-C., Ting, C.-S., Tsai, H.-T., Chen, J.-W., Lee, C.-H., 2011. Dynamic analysis of the infiltration rate of artificial recharge of groundwater: A case study of Wanglong Lake, Pingtung, Taiwan. Environ. Earth Sci., 63, 77–85. DOI: 10.1007/s12665-010-0670-8.10.1007/s12665-010-0670-8
  41. van Genuchten, M.T., 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J., 44, 892–898.10.2136/sssaj1980.03615995004400050002x
  42. Vandenbohede, A., Van Houtte, E., 2012. Heat transport and temperature distribution during managed artificial recharge with surface ponds. J. Hydrol., 472–473, 77–89. DOI: 10.1016/j.jhydrol.2012.09.028.10.1016/j.jhydrol.2012.09.028
  43. Vogel, T., Dohnal, M., Votrubova, J., 2011. Modeling heat fluxes in macroporous soil under sparse young forest of temperate humid climate. J. Hydrol., 402, 367–376. DOI: 10.1016/j.jhydrol.2011.03.030.10.1016/j.jhydrol.2011.03.030
  44. Votrubová, J., Dohnal, M., Vogel, T., Tesař, M., 2012. On parameterization of heat conduction in coupled soil water and heat flow modelling. Soil Water Res. 7, 125–137.10.17221/21/2012-SWR
  45. Wangemann, S.G., Kohl, R.A., Molumeli, P.A., 2000. Infiltration and percolation influenced by antecedent soil water content and air entrapment. Trans. Am. Soc. Agric. Eng., 43, 1517–1523.10.13031/2013.3051
  46. Winiarski, T., Lassabatere, L., Angulo-Jaramillo, R., Goutaland, D., 2013. Characterization of the heterogeneous flow and pollutant transfer in the unsaturated zone in the fluvio-glacial deposit. Procedia Environ. Sci., 19, 955–964. http://dx.doi.org/10.1016/j.proenv.2013.06.10510.1016/j.proenv.2013.06.105
  47. Yilmaz, D., Lassabatere, L., Angulo-Jaramillo, R., Deneele, D., Legret, M., 2010. Hydrodynamic characterization of basic oxygen furnace slag through an adapted BEST method. Vadose Zone J., 9, 107–116.10.2136/vzj2009.0039
  48. Yilmaz, D., Lassabatere, L., Deneele, D., Angulo-Jaramillo, R., Legret, M., 2013. Influence of carbonation on the microstructure and hydraulic properties of a basic oxygen furnace slag. Vadose Zone J., 12, 2.10.2136/vzj2012.0121
DOI: https://doi.org/10.1515/johh-2017-0010 | Journal eISSN: 1338-4333 | Journal ISSN: 0042-790X
Language: English
Page range: 222 - 233
Submitted on: Jun 1, 2016
Accepted on: Dec 6, 2016
Published on: Jul 22, 2017
Published by: Slovak Academy of Sciences, Institute of Hydrology; Institute of Hydrodynamics, Czech Academy of Sciences, Prague
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2017 Sébastien Loizeau, Yvan Rossier, Jean-Paul Gaudet, Aurore Refloch, Katia Besnard, Rafael Angulo-Jaramillo, Laurent Lassabatere, published by Slovak Academy of Sciences, Institute of Hydrology; Institute of Hydrodynamics, Czech Academy of Sciences, Prague
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.