Have a personal or library account? Click to login
Application of minidisk infiltrometer to estimate water repellency in Mediterranean pine forest soils Cover

Application of minidisk infiltrometer to estimate water repellency in Mediterranean pine forest soils

Open Access
|Jul 2017

References

  1. Alagna, V., Bagarello, V., Di Prima, S., Iovino, M., 2016. Determining hydraulic properties of a loam soil by alternative infiltrometer techniques. Hydrol. Process., 30, 2, 263–275.10.1002/hyp.10607
  2. Bagarello, V., Castellini, M., Di Prima, S., Iovino, M., 2014. Soil hydraulic properties determined by infiltration experiments and different heights of water pouring. Geoderma, 213, 492–501.10.1016/j.geoderma.2013.08.032
  3. Beatty, S.M., Smith, J.E., 2013. Dynamic soil water repellency and infiltration in post-wildfire soils. Geoderma 192, 160–172.10.1016/j.geoderma.2012.08.012
  4. Buczko, U., Bens, O., Fischer, H., Hüttl, R.F., 2002. Water repellency in sandy luvisols under different forest transformation stages in northeast Germany. Geoderma, 109, 1–2, 1–18.10.1016/S0016-7061(02)00137-4
  5. Buczko, U., Bens, O., Hüttl, R.F., 2005. Variability of soil water repellency in sandy forest soils with different stand structure under Scots pine (Pinus sylvestris) and beech (Fagus sylvatica). Geoderma, 126, 3–4, 317–336.10.1016/j.geoderma.2004.10.003
  6. Cerdà, A. 1996. Seasonal variability of infiltration rates under contrasting slope conditions in southeast Spain. Geoderma, 69, 217–232.
  7. Cerdà, A., Doerr, S.H., 2007. Soil wettability, runoff and erodibility of major dry-Mediterranean land use types on calcareous soils. Hydrol. Process., 21, 17, 2325–2336.10.1002/hyp.6755
  8. DeBano, L.F., 2000. Water repellency in soils: a historical overview. J. Hydrol., 231–232, 4–32.10.1016/S0022-1694(00)00180-3
  9. de Jonge, L.W., Jacobsen, O.H., Moldrup, P., 1999. Soil water repellency: effects of water content, temperature, and particle size. Soil Sci. Soc. Am. J., 63, 3, 437–442.10.2136/sssaj1999.03615995006300030003x
  10. Dekker, L.W., Ritsema, C.J., 1994. How water moves in a water repellent sandy soil. 1. Potential and actual water repellency. Water Resour. Res., 30, 9, 2507–2517.10.1029/94WR00749
  11. Doerr, S.H., 1998. On standardizing the ‘Water Drop Penetration Time’ and the ‘Molarity of an Ethanol Droplet’ techniques to classify soil hydrophobicity: A case study using medium textured soils. Earth Surf. Proc. Landf., 23, 7, 663–668.10.1002/(SICI)1096-9837(199807)23:7<;663::AID-ESP909>3.0.CO;2-6
  12. Doerr, S.H., Shakesby, R.A., Walsh, R.P.D., 1996. Soil hydrophobicity variations with depth and particle size fraction in burned and unburned Eucalyptus globulus and Pinus pinaster forest terrain in the Águeda Basin, Portugal. Catena, 27, 1, 25–47.10.1016/0341-8162(96)00007-0
  13. Doerr, S.H., Shakesby, R.A., Walsh, R.P.D., 2000. Soil water repellency: its causes, characteristics and hydro-geomorphological significance. Earth-Sci. Rev., 51, 1–4, 33–65.10.1016/S0012-8252(00)00011-8
  14. Ebel, B.A., Moody, J.A., Martin, D.A., 2012. Hydrological conditions controlling runoff generation immediately after wildfire. Water Resour. Res., 48, W03529.10.1029/2011WR011470
  15. Ellerbrock, R.H., Gerke, H.H., Bachmann, J., Goebel, M.-O., 2005. Composition of organic matter fractions for explaining wettability of three forest soils. Soil Sci. Soc. Am. J., 69, 1, 57–66.10.2136/sssaj2005.0057
  16. Fér, M., Leue, M., Kodešová, R., Gerke, H.H., Ellerbrock, R.H., 2016. Droplet infiltration dynamics and soil wettability related to soil organic matter of soil aggregate coatings and interiors. J. Hydrol. Hydromech., 64, 2, 111–120.10.1515/johh-2016-0021
  17. García, F.J.M., Dekker, L.W., Oostindie, K., Ritsema, C.J., 2005. Water repellency under natural conditions in sandy soils of southern Spain. Soil Research, 43, 3, 291–296.10.1071/SR04089
  18. Iovino, M., Castellini, M., Bagarello, V., Giordano, G., 2016. Using static and dynamic indicators to evaluate soil physical quality in a sicilian area. Land Degradation & Development, 27, 2, 200–210.10.1002/ldr.2263
  19. Hallett, P.D., Baumgartl, T., Young, I.M., 2001. Subcritical water repellency of aggregates from a range of soil management practices. Soil Sci. Soc. Am. J., 65, 1, 184–190.10.2136/sssaj2001.651184x
  20. Hallin, I., Douglas, P., Doerr, S.H., Bryant, R., 2013. The role of drop volume and number on soil water repellency determination. Soil Sci. Soc. Am. J., 77, 5, 1732–1743.10.2136/sssaj2013.04.0130
  21. Helsel, D.R., Hirsch, R.M., 2002. Statistical methods in water resources. Techniques of Water resources investigations, Book 4, chapter A3. U.S. Geological Survey. 522 p. Publication available at: http://water.usgs.gov/pubs/twri/twri4a3/
  22. Hunter, A.E., Chau, H.W., Si, B.C., 2011. Impact of tension infiltrometer disc size on measured soil water repellency index. Can. J. Soil Sci., 91, 1, 77–81.10.4141/cjss10033
  23. Jungerius, P.D., Dejong, J.H., 1989. Variability of water repellence in the dunes along the Dutch coast. Catena, 16, 4–5, 491–497.10.1016/0341-8162(89)90030-1
  24. Lee, D.M., Reynolds, W.D., Elrick, D.E., Clothier, B.E., 1985. A comparison of three field methods for measuring saturated hydraulic conductivity. Can. J. Soil Sci., 65, 3, 563–573.10.4141/cjss85-060
  25. Leue, M., Gerke, H.H., Godow, S.C., 2015. Droplet infiltration and organic matter composition of intact crack and biopore surfaces from clay-illuvial horizons. Journal of Plant Nutrition and Soil Science, 178, 2, 250–260.10.1002/jpln.201400209
  26. Lichner, L., Holko, L., Zhukova, N., Schacht, K., Rajkai, K., Fodor, N., Sándor, R., 2012. Plants and biological soil crust influence the hydrophysical parameters and water flow in an aeolian sandy soil. J. Hydrol. Hydromech., 60, 4, 309–318.10.2478/v10098-012-0027-y
  27. Lichner, L., Capuliak, J., Zhukova, N., Holko, L., Czachor, H., Kollar, J., 2013a. Pines influence hydrophysical parameters and water flow in a sandy soil. Biologia, 68, 6, 1104–1108.10.2478/s11756-013-0254-7
  28. Lichner, L., Hallett, P.D., Drongová, Z., Czachor, H., Kovacik, L., Mataix-Solera, J., Homolák, M., 2013b. Algae influence the hydrophysical parameters of a sandy soil. Catena, 108, 58–68.10.1016/j.catena.2012.02.016
  29. Lilliefors, H.W., 1967. On the Kolmogorov-Smirnov test for normality with mean and variance unknown. J. Am. Stat. Assoc., 62, 318, 399–402.10.1080/01621459.1967.10482916
  30. Ma'shum, M., Farmer, V., 1985. Origin and assessment of water repellency of a sandy South Australian soil. Soil Research, 23, 4, 623–626.10.1071/SR9850623
  31. McKissock, I., Gilkes, R.J., Harper, R.J., Carter, D.J., 1998. Relationships of water repellency to soil properties for different spatial scales of study. Soil Research, 36, 3, 495–508.10.1071/S97071
  32. Moody, D.R., Schlossberg, M.J., 2010. Soil water repellency index prediction using the molarity of ethanol droplet test. Vadose Zone J., 9, 4, 1046–1051.10.2136/vzj2009.0119
  33. Nelson, D.W, Sommers, L.E., 1996. Methods of Soil Analysis. Part 3. Chemical Methods. Soil Science Society of America Book Series, no.5, pt. 3. Soil Science Society of America, American Society of Agronomy, Madison, WI, pp. 961–1010.
  34. Nyman, P., Sheridan, G., Lane, P.N.J., 2010. Synergistic effects of water repellency and macropore flow on the hydraulic conductivity of a burned forest soil, south-east Australia. Hydrol. Process., 24, 2871–2887.10.1002/hyp.7701
  35. Pekárová, P., Pekár, J., Lichner, L., 2015. A new method for estimating soil water repellency index. Biologia, 70, 11, 1450–1455.10.1515/biolog-2015-0178
  36. Philip, J.R., 1957. The theory of infiltration: 4. Sorptivity and algebraic infiltration equations. Soil Sci., 84, 257–264.10.1097/00010694-195709000-00010
  37. Rodríguez-Alleres, M., Benito, E., de Blas, E., 2007. Extent and persistence of water repellency in north-western Spanish soils. Hydrol. Process., 21, 17, 2291–2299.10.1002/hyp.6761
  38. Sepehrnia, N., Hajabbasi, M.A., Afyuni, M., Lichner, Ľ., 2016. Extent and persistence of water repellency in two Iranian soils. Biologia, 71, 1137–1143.10.1515/biolog-2016-0135
  39. Soil Survey Staff, 2014. Keys to Soil Taxonomy. 12th ed. NRCS, Washington, DC.
  40. Tillman, R.W., Scotter, D.R., Wallis, M.G., Clothier, B.E., 1989. Water-repellency and its measurement by using intrinsic sorptivity. Aust. J. Soil Res., 27, 4, 637–644.10.1071/SR9890637
  41. Tschapek, M., 1984. Criteria for determining the hydrophilicity-hydrophobicity of soils. Zeitschrift für Pflanzenernährung und Bodenkunde, 147, 2, 137–149.10.1002/jpln.19841470202
  42. Vandervaere, J.P., Vauclin, M., Elrick, D.E., 2000. Transient flow from tension infiltrometers: II. Four methods to determine sorptivity and conductivity. Soil Sci. Soc. Am. J., 64, 1272–1284.10.2136/sssaj2000.6441272x
  43. Van’t Woudt, B.D., 1959. Particle coatings affecting the wettability of soils. Journal of Geophysical Research, 64, 2, 263–267.10.1029/JZ064i002p00263
  44. Vogelmann, E.S., Reichert, J.M., Prevedello, J., Consensa, C.O.B., Oliveira, A.É., Awe, G.O., Mataix-Solera, J., 2013. Threshold water content beyond which hydrophobic soils become hydrophilic: The role of soil texture and organic matter content. Geoderma, 209–210, 177–187.10.1016/j.geoderma.2013.06.019
  45. Warrick, A.W., 1998. Appendix 1: Spatial variability. In: Hillel, D. (Ed.): Environmental Soil Physics. Academic Press, San Diego, pp. 655–675.10.1016/B978-012348525-0/50026-4
  46. Watson, C.L., Letey, J., 1970. Indices for characterizing soil-water repellency based upon contact angle-surface tension relationships. Soil Sci. Soc. Am. J., 34, 6, 841–844.10.2136/sssaj1970.03615995003400060011x
DOI: https://doi.org/10.1515/johh-2017-0009 | Journal eISSN: 1338-4333 | Journal ISSN: 0042-790X
Language: English
Page range: 254 - 263
Submitted on: Aug 9, 2016
Accepted on: Dec 6, 2016
Published on: Jul 22, 2017
Published by: Slovak Academy of Sciences, Institute of Hydrology; Institute of Hydrodynamics, Czech Academy of Sciences, Prague
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2017 Vincenzo Alagna, Massimo Iovino, Vincenzo Bagarello, Jorge Mataix-Solera, Ľubomír Lichner, published by Slovak Academy of Sciences, Institute of Hydrology; Institute of Hydrodynamics, Czech Academy of Sciences, Prague
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.