Have a personal or library account? Click to login
A modified hydrodynamic model for routing unsteady flow in a river having piedmont zone Cover

A modified hydrodynamic model for routing unsteady flow in a river having piedmont zone

Open Access
|Dec 2016

References

  1. Akanbi, A.A., Katopodes, N.D., 1990. Model for flood propagation on initially dry land. J. Hydraul. Eng., 114, 689-706.10.1061/(ASCE)0733-9429(1988)114:7(689)
  2. Bateman, A., Medina, V., Velasco, D., 2010. Soil infiltration effect in flat areas floods simulations. In: XVIII International Conference on Water Resources, CIMNE, Barcelona.
  3. Beam, R.M., Warming, R.F., 1976. An implicit finite difference algorithm for hyperbolic systems in conservation law form. J. Comput. Phys., 22, 87-110.10.1016/0021-9991(76)90110-8
  4. Beven, K., 1984. Infiltration into a class of vertically nonuniform soils. Hydrolog. Sci. J., 29, 425-434.10.1080/02626668409490960
  5. Chaudhry, M.H., 2008. Open channel flow. 2nd edition. Prentice- Hall Inc, Englewood Cliffs.
  6. Chou, S.T., 1978. Infiltration during an unsteady rain. Water Resour. Res., 14, 3, 461-466.10.1029/WR014i003p00461
  7. Dagan, G., Bresler, E., 1983. Unsaturated flow in a spatially variable. 1. Derivation of models of infiltration and redistribution. Water Resour. Res., 19, 2, 413-420.10.1029/WR019i002p00413
  8. Fang, H., Chen, M., Chen, Q., 2008. One-dimensional numerical simulation of non-uniform sediment transport under unsteady flows. J. Sediment. Res., 23, 315-328.10.1016/S1001-6279(09)60003-2
  9. Fennema, R.J., Chaudhry, M.H., 1986. Explicit numerical schemes for unsteady free-surface flow with shocks. Water Resour. Res., 22, 13, 1923-1930.10.1029/WR022i013p01923
  10. Fiedler, F.R., Ramirez, J.A., 2000. A numerical method for simulating discontinuous shallow flow over an infiltrating surface. Int. J. Numer. Meth. Fluids, 32, 219-240.10.1002/(SICI)1097-0363(20000130)32:2<;219::AID-FLD936>3.0.CO;2-J
  11. Freyberg, D.L., Reeder, J.W., Franzini, J.B., Remson, I., 1980. Application of the Green-Ampt model to infiltration under time-dependent surface water depth. Water Resour. Res., 16, 3, 517-528.10.1029/WR016i003p00517
  12. Goswami, D.C., Goswami, I.D., Duarah, B.P., Deka, P.P., 1996. Geomorphological mapping of assam using satellite remote sensing techniques. Indian J. Geomorph., 1, 2, 225-235.
  13. Govindaraju, R.S., Kavvas, M.V., Jones, S.E., Rolston, D.E., 1996. Green-Ampt model for analysing one-dimensional convective transport in unsaturated soils. J. Hydrol., 178, 337-350.10.1016/0022-1694(95)02796-3
  14. Kacimov, A.R., Al-Ismaily, S., Al-Maktoumi, A., 2010. Green- Ampt one-dimensional infiltration from a ponded surface into heterogeneous soil. J. Irrig. Drain Eng., 136, 1, 68-72.10.1061/(ASCE)IR.1943-4774.0000121
  15. Kalita, H.M., Sarma, A.K., 2012. Efficiency and performances of finite difference schemes in the solution of saint Venant’s equation. Int. J. Civ. Struct. Eng. Res., 2, 3, 950-958.10.6088/ijcser.00202030022
  16. Kalita, H.M., Sarma, A.K., Bhattacharjya, R.K., 2014. Evaluation of optimal river training work using GA based linked simulation-optimization approach. Water Resour. Manag., 28, 2077-2092.10.1007/s11269-014-0593-3
  17. Kassem, A.A., Chaudhry, M.H., 1998. Comparison of coupled and semi coupled numerical models for alluvial channels. J. Hydraul. Eng., 124, 8, 794-802.10.1061/(ASCE)0733-9429(1998)124:8(794)
  18. Kassem, A.A., Chaudhry, M.H., 2005. Effect of bed armoring on bed topography of channel bends. J. Hydrol. Eng., 131, 12, 1136-1140.10.1061/(ASCE)0733-9429(2005)131:12(1136)
  19. Keskin, M.E., Agiralioglu, N., 1997. A simplified dynamic model for flood routing in rectangular channels. J. Hydrol., 202, 302-314.10.1016/S0022-1694(97)00072-3
  20. Kong, J., Xin, P., Song, Z.Y., Li, L., 2010. A new model for coupling surface and subsurface water flows: with an application to a lagoon. J. Hydrol., 390, 116-120.10.1016/j.jhydrol.2010.06.028
  21. Liang, D., Falconer, R.A., Lin, B., 2007. Coupling surface and subsurface flows in a depth averaged flood wave model. J. Hydrol., 337, 147-158.10.1016/j.jhydrol.2007.01.045
  22. Lui, J., Zhang, J., Feng, J., 2008. Green-Ampt model for layered soils with nonuniform initial water content under unsteady infiltration. Soil Sci. Soc. Am. J., 72, 4, 1041-1047.10.2136/sssaj2007.0119
  23. Ma, Y., Feng, S., Su, D., Gao, G., Huo, Z., 2010. Modeling water infiltration in a large layered soil column with a modified Green-Ampt model and Hydrus- 1D. Comput. Electron. Agr., 71S, S40-S47.10.1016/j.compag.2009.07.006
  24. Mein, R.G., Larson, C.L., 1973. Modeling infiltration during a steady rain. Water Resour. Res., 9, 2, 384-394.10.1029/WR009i002p00384
  25. Mohammad, R.H., Mohammad, J.A., Parviz, M., 2007. A differential quadrature analysis of unsteady open channel flow. Journal of Appl. Math. Model., 31, 8, 1594-1608.10.1016/j.apm.2006.05.006
  26. Molls, T., Zhao, G., 2000. Depth-averaged simulation of supercritical flow in channel with wavy sidewall. J. Hydraul. Eng. ASCE, 126, 6, 437-445.10.1061/(ASCE)0733-9429(2000)126:6(437)
  27. Molls, T., Chaudhry, M.H., Khan, K.W., 1995. Numerical simulation of two-dimensional flow near a spur-dike. Adv. Water Resour., 18, 4, 221-236.10.1016/0309-1708(95)00010-G
  28. Mousseau, V.A., Knoll, D.A., Reisner, J.M., 2002. An Implicit Nonlinearly Consistent Method for the Two-Dimensional Shallow-Water Equation with Coriolis Force. American Meteorological Society, 130, 2611-2625.10.1175/1520-0493(2002)130<;2611:AINCMF>2.0.CO;2
  29. Niswonger, R.G., Prudic, D.E., Pohll, G., Constantz, J., 2005. Incorporate seepage losses into the unsteady stream flow equations for simulation intermittent flow along mountain front streams. Water Resour. Res., 41, W06006.10.1029/2004WR003677
  30. Patowary, S., Sarma, A.K., 2013. Hydrodynamic flood routing considering piedmont zone. Int. J. Civ. Struct. Eng. Res., 3, 3, 464-474.
  31. Ramesh, R., Datta, B., Bhallamudi, M., Narayana, A., 2000. Optimal estimation of roughness in open-channel flows. J. Hydraul. Eng. ASCE, 126, 4, 299-303.10.1061/(ASCE)0733-9429(2000)126:4(299)
  32. Reeder, J.W, Freyberg, D.L., Franzini, J.B., Remson, 1980. I. Infiltration under rapidly varying surface water depths. Water Resources Research, 16, 1, 97-104.10.1029/WR016i001p00097
  33. Selker, J.S., Duan, J., Parlange, J.Y., 1999. Green and Ampt infiltration into soils of variable pore size with depth. Water Resour. Res., 35, 5, 1685-1688.10.1029/1999WR900008
  34. Strelkoff, T., 1970. Numerical solution of Saint-Venant equations. J. Hydraul. Eng., 96, 223-252.10.1061/JYCEAJ.0002262
  35. Suils, M., Meyerhoff, S.B., Paniconi, C., Maxwell, R.M., Putti, M., Kollet, S.J., 2010. A comparison of two physic-based numerical models for simulating surface water-groundwater interactions. Adv. Water Resour., 33, 456-647.10.1016/j.advwatres.2010.01.010
  36. Voller, V.R., 2011. On a fractional derivative form of the Green-Ampt infiltration model. Adv. Water Resour., 34, 257-262.10.1016/j.advwatres.2010.11.012
  37. Zhang, M.L., Shen, Y.M., 2007. Study and application of steady flow and unsteady flow mathematical model for channel networks. Journal of Hydrodynamics, 19, 572-578. 10.1016/S1001-6058(07)60155-3
DOI: https://doi.org/10.1515/johh-2016-0052 | Journal eISSN: 1338-4333 | Journal ISSN: 0042-790X
Language: English
Page range: 60 - 67
Submitted on: Oct 19, 2015
Accepted on: Jul 26, 2016
Published on: Dec 8, 2016
Published by: Slovak Academy of Sciences, Institute of Hydrology; Institute of Hydrodynamics, Czech Academy of Sciences, Prague
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2016 Sudarshan Patowary, Arup Kumar Sarma, published by Slovak Academy of Sciences, Institute of Hydrology; Institute of Hydrodynamics, Czech Academy of Sciences, Prague
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.