Have a personal or library account? Click to login
Numerical modelling of two-layer shallow water flow in microtidal salt-wedge estuaries: Finite volume solver and field validation Cover

Numerical modelling of two-layer shallow water flow in microtidal salt-wedge estuaries: Finite volume solver and field validation

Open Access
|Dec 2016

References

  1. Arita, M., Jirka, G.H., 1987. Two-layer model of saline wedge. II: Prediction. J. Hydraul. Eng., 113, 10, 1249-1263.10.1061/(ASCE)0733-9429(1987)113:10(1249)
  2. Armi, L., 1986. The hydraulics of two flowing layers with different densities. J. Fluid Mech., 163, 27-58.10.1017/S0022112086002197
  3. Balloffet, A., Borah, D.K., 1985. Lower Mississippi Salinity Analysis. J. Hydraul. Eng., 111, 2, 300-315.10.1061/(ASCE)0733-9429(1985)111:2(300)
  4. Bermudez, A., Vázquez-Cendón, M., 1994. Upwind methods for hyperbolic conservation laws with source terms. Comput. Fluids, 23, 8, 1049-1071.10.1016/0045-7930(94)90004-3
  5. Brufau, P., 2002. A numerical model for the flooding and drying of irregular domains. Int. J. Numer. Methods Fluids, 39, 3, 247-275.10.1002/fld.285
  6. Castro, M.J., Macias, J., Parés, C., 2001. A Q-scheme for a class of systems of coupled conservation laws with source term. Application to a two-layer 1D shallow water system. ESAIM Math. Model. Numer. Anal., 35, 1, 107-127.10.1051/m2an:2001108
  7. Castro, M.J., Garcia-Rodriguez, J., González-Vida, J.M., Macas, J., Parés, C., Vázquez-Cendón, M., 2004. Numerical simulation of two-layer shallow water flows through channels with irregular geometry. J. Comput. Phys., 195, 1, 202-235.10.1016/j.jcp.2003.08.035
  8. Castro, M.J., Ferreiro Ferreiro, A., García-Rodríguez, J., González- Vida, J., Macas, J., Parés, C., Elena Vázquez-Cendón, M., 2005. The numerical treatment of wet/dry fronts in shallow flows: application to one-layer and two-layer systems. Math. Comput. Model., 42, 3-4, 419-439.10.1016/j.mcm.2004.01.016
  9. Castro, M.J., Gonzales-Vida, J., Pares, C., 2006. Numerical treatment of wet/dry fronts in shallow flows with a modified Roe scheme. Math. Models Methods Appl. Sci., 16, 6, 897-934.10.1142/S021820250600139X
  10. Castro, M.J., García-Rodríguez, J.A., González-Vida, J.M., Macas, J., Parés, C., 2007. Improved FVM for two-layer shallow-water models: Application to the Strait of Gibraltar. Adv. Eng. Softw., 38, 6, 386-398.10.1016/j.advengsoft.2006.09.012
  11. Castro, M.J., Dumbser, M., Pares, C., Toro, E.F., 2009a. ADER schemes on unstructured meshes for nonconservative hyperbolic systems: applications to geophysical flows. Comp. & Fluids, 38, 1731-1748.10.1016/j.compfluid.2009.03.008
  12. Castro, M.J., Fernández-Nieto, E.D., Ferreiro, A.M., García- Rodríguez, J.A., Parés, C., 2009b. High order extensions of Roe schemes for two-dimensional nonconservative hyperbolic systems. Journal of Scientific Computing, 39, 1, 67-114.10.1007/s10915-008-9250-4
  13. Castro, M.J., Fernandez-Nieto, E.D., Gonzalez-Vida, J.M., Pares, C., 2011. Numerical treatment of the loss of hyperbolicity of the two-layer shallow-water system. J. Sci. Comput., 48, 1, 16-40.10.1007/s10915-010-9427-5
  14. Dazzi, R., Tomasino, M., 1974. Mathematical model of salinity intrusion in the delta of the Po River. Coast. Eng. Proc., 134, 2302-2321.10.9753/icce.v14.134
  15. Dermissis, V., Partheniades, E., 1985. Dominant shear stresses in arrested saline wedges. J. Waterw. Port, Coastal, Ocean Eng., 111, 4, 733-752.10.1061/(ASCE)0733-950X(1985)111:4(733)
  16. Farmer, D., Armi, L., 1986. Maximal two-layer exchange over a sill and through the combination of a sill and contraction with barotropic flow. J. Fluid Mech., 164, 53-76.10.1017/S002211208600246X
  17. Geyer, W.R., Ralston, D.K., 2011. The dynamics of strongly stratified estuaries. In: Wolanski, E., McLusky, D. (Eds.): Treatise on Estuarine and Coastal Science, Volume 2, Elsevier, pp. 37-52.10.1016/B978-0-12-374711-2.00206-0
  18. Grubert, J., 1989. Interfacial mixing in stratified channel flows. J. Hydraul. Eng., 115, 7, 887-905.10.1061/(ASCE)0733-9429(1989)115:7(887)
  19. Hansen, D., Rattray Jr, M., 1966. New dimensions in estuary classification. Limnol. Oceanogr., 11, 3, 319-326.10.4319/lo.1966.11.3.0319
  20. Harten, A., 1984. On a class of high resolution total-variationstable finite-difference schemes. SIAM J. Numer. Anal., 21, 1, 1-23.10.1137/0721001
  21. Johnson, B., Boyd, M., Keulegan, G., 1987. A Mathematical Study of the Impact on Salinity Intrusion of Deepening the Lower Mississippi River Navigation Channel. Technical Report April, US Army Corps of Engineers, Vicksburg, Mississippi.
  22. Krvavica, N., Mofardin, B., Ruzic, I., Ozanic, N., 2012. Measurement and analysis of salinization at the Rječina estuary. Gradevinar, 64, 11, 923-933.10.14256/JCE.805.2012
  23. Liu, H., Yoshikawa, N., Miyazu, S., Watanabe, K., 2015. Influence of saltwater wedges on irrigation water near a river estuary. Paddy Water Environ., 13, 2, 179-189.10.1007/s10333-014-0419-1
  24. Ljubenkov, I., 2015. Hydrodynamic modeling of stratified estuary: case study of the Jadro River (Croatia). J. Hydrol. Hydromech., 63, 1, 29-37.10.1515/johh-2015-0001
  25. Rebollo, T.C., Dom, A., Fern, E.D., 2003. A family of stable numerical solvers for the shallow water equations with source terms. Comput. Methods Appl. Mech. Eng., 192, 1-2, 203-225.10.1016/S0045-7825(02)00551-0
  26. Roe, P., 1981. Approximate Riemann solvers, parameter vectors, and difference schemes. J. Comput. Phys., 43, 2, 357-372.10.1016/0021-9991(81)90128-5
  27. Sargent, F.E., Jirka, G.H., 1987. Experiments on saline wedge. J. Hydraul. Eng., 113, 10, 1307-1323.10.1061/(ASCE)0733-9429(1987)113:10(1307)
  28. Schijf, J., Schönfeld, J., 1953. Theoretical considerations on the motion of salt and fresh water. In: Proc. Minnesota Int. Hydraul. Conv., ASCE, Minneapolis, Minnesota, pp. 321-333.
  29. Sierra, J.P., Sánchez-Arcilla, a., Figueras, P. a., González del Ro, J., Rassmussen, E.K., Mösso, C., 2004. Effects of discharge reductions on salt wedge dynamics of the Ebro River. River Res. Appl., 20, 1, 61-77.10.1002/rra.721
  30. Stommel, H.M., Farmer, H.G., 1952. On the nature of estuarine circulation, part 1, chap. 3 and 4. Technical report. Woods Hole Oceanographic Institution, Woods Hole, Massachusetts.
  31. Vázquez-Cendón, M.E., 1999. Improved treatment of source terms in upwind schemes for the shallow water equations in channels with irregular geometry. J. Comput. Phys., 148, 2, 497-526.10.1006/jcph.1998.6127
DOI: https://doi.org/10.1515/johh-2016-0039 | Journal eISSN: 1338-4333 | Journal ISSN: 0042-790X
Language: English
Page range: 49 - 59
Submitted on: Feb 11, 2016
Accepted on: Jun 7, 2016
Published on: Dec 8, 2016
Published by: Slovak Academy of Sciences, Institute of Hydrology; Institute of Hydrodynamics, Czech Academy of Sciences, Prague
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2016 Nino Krvavica, Ivica Kožar, Vanja Travaš, Nevenka Ožanić, published by Slovak Academy of Sciences, Institute of Hydrology; Institute of Hydrodynamics, Czech Academy of Sciences, Prague
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.