Have a personal or library account? Click to login
Modelling free surface flow with curvilinear streamlines by a non-hydrostatic model Cover

Modelling free surface flow with curvilinear streamlines by a non-hydrostatic model

Open Access
|Jul 2016

References

  1. Abramowitz, M., Stegun, I.A., 1972. Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables. 10th edition, Wiley, New York, NY.
  2. Anh, T.N., Hosoda, T., 2007. Depth-averaged model of openchannel flows over an arbitrary 3-D surface and its applications to analysis of water surface profile. J. Hydr. Engrg., 133, 4, 350-360.10.1061/(ASCE)0733-9429(2007)133:4(350)
  3. Berger, R.C., Carey, G.F., 1998. Free-surface flow over curved surfaces-Part I: Perturbation analysis. Int. J. Numer. Meth. Fluids, 28, 2, 191-200.10.1002/(SICI)1097-0363(19980815)28:2<;191::AID-FLD705>3.0.CO;2-N
  4. Blom, P., Booij, R., 1995. Turbulent free-surface flow over sills. J. Hydr. Res., 33, 5, 663-682.10.1080/00221689509498563
  5. Castro-Orgaz, O., Hager, W.H., 2009. Curved-streamline transitional flow from mild to steep slopes. J. Hydr. Res., 47, 5, 574-584.10.3826/jhr.2009.3656
  6. Castro-Orgaz, O., Chanson, H., 2011. Near-critical free-surface flows: real fluid flow analysis. Environ. Fluid Mech., 11, 5, 499-516.10.1007/s10652-010-9192-x
  7. Castro-Orgaz, O., 2013. Potential flow solution for open channel flows and weir crest overflows. J. Irrig. Drain. Engrg., 139, 7, 551-559.10.1061/(ASCE)IR.1943-4774.0000580
  8. Castro-Orgaz, O., Hager, W.H., 2013. Velocity profile approximations for two-dimensional potential open channel flow. J. Hydr. Res., 51, 6, 645-655.10.1080/00221686.2013.809387
  9. Castro-Orgaz, O., Chanson, H., 2014. Depth-averaged specific energy in open-channel flow and analytical solution for critical irrotational flow over weirs. J. Irrig. Drain. Engrg., 140, 1, 10.1061/(ASCE)IR.1943-4774.0000666.10.1061/(ASCE)IR.1943-4774.0000666
  10. Castro-Orgaz, O., Hager, W.H., 2014. One-dimensional modelling of curvilinear free surface flow: generalised Matthew theory. J. Hydr. Res., 52, 1, 14-23.10.1080/00221686.2013.834853
  11. Chaudhry, M.H., 2008. Open Channel Flow. 2nd edition, Springer Science and Business Media LLC, New York, NY.
  12. Dewals, B.J., Erpicum, S., Archambeau, P., Detrembleur, S., Pirotton, M., 2006. Depth-integrated flow modelling taking into account bottom curvature, J. Hydr. Res., 44, 6, 787-795.10.1080/00221686.2006.9521729
  13. Dressler, R.F., 1978. New nonlinear shallow flow equations with curvature. J. Hydr. Res., 16, 3, 205-220.10.1080/00221687809499617
  14. Ehrenberger, R., 1929. Versuche über die verteilung der drücke an wehrrücken infolge des abstürzcnden wassers. [Experiments on the distribution of pressures along the face of weirs resulting from the impact of the falling water]. Die Wasserwirtschaft, Vienna, 22, 5, 65-72. (In German.)
  15. Fenton, J.D., 1996. Channel flow over curved boundaries and a new hydraulic theory. In: Proc. 10th Congress, APD-IAHR, Langkawi, Malaysia, August 26-29, 2, 266-273.
  16. Ferziger, J.H., Peric, M., 2002. Computational Methods for Fluid Dynamics. 3rd revised edition, Springer-Verlag Berlin Heidelberg, New York, NY.
  17. Fuhrman, D.H., Bingham, H.B., Madsen, P.A., 2005. Nonlinear wave structure interactions with high order Boussinesq model. Coast. Engrg., 52, 8, 655-672.10.1016/j.coastaleng.2005.03.001
  18. Ghamry, H.K., Steffler, P.M., 2002. Effect of applying different distribution shapes for velocities and pressure on simulation of curved open channels. J. Hydr. Engrg., 128, 11, 969-982.10.1061/(ASCE)0733-9429(2002)128:11(969)
  19. Haaland, S.E., 1983. Simple and explicit formulas for the friction factor in turbulent pipe flow. J. Fluids Engrg., 105, 1, 89-90.10.1115/1.3240948
  20. Khan, A.A., Steffler, P.M., 1996. Modelling overfalls using vertically averaged and moment equations. J. Hydr. Engrg., 122, 7, 397-402.10.1061/(ASCE)0733-9429(1996)122:7(397)
  21. Liang, D., Lin, B., Falconer, R.A., 2007. Simulation of rapidly varying flow using an efficient TVD-MacCormack scheme. Int. J. Numer. Meth. Fluids, 53, 5, 811-826.10.1002/fld.1305
  22. Matthew, G.D. 1991. Higher order, one-dimensional equations of potential flow in open channels. Proc. Instn. Civ. Eng., London, England, 91, 3, 187-201.
  23. Montes, J.S., 1994. Potential flow solution to 2-D transition from mild to steep slope. J. Hydr. Engrg., 120, 5, 601-621.10.1061/(ASCE)0733-9429(1994)120:5(601)
  24. Serre, F., 1953. Contribution à l’étude des écoulements permanents et variables dans les canaux [Contribution to the study of steady and unsteady channel flows]. La Houille Blanche, 8, 6-7, 374-388. (In French.)10.1051/lhb/1953034
  25. Steffler, P.M., Jin, Y., 1993. Depth averaged and moment equations for moderately shallow free surface flow. J. Hydr. Res., 31, 1, 5-17.10.1080/00221689309498856
  26. U. S. Bureau of Reclamation, 1948. Studies of crests for overfall dams. Hydraulic Investigations, Bulletin 3, Part VI, Boulder Canyon Project Final Reports, Denver, Colo.
  27. White, F.M., 2003. Fluid Mechanics. 5th edition, McGraw-Hill, New York, NY.
  28. Xia, C., Jin, Y., 2006. Multilayer averaged and moment equations for one-dimensional open-channel flows. J. Hydr. Engrg., 132, 8, 839-849.10.1061/(ASCE)0733-9429(2006)132:8(839)
  29. Zerihun, Y.T., 2004. A one-dimensional Boussinesq-type momentum model for steady rapidly varied open channel flows. Ph.D. Thesis, Department of Civil and Environmental Engineering, The University of Melbourne, Australia.
  30. Zerihun, Y.T., Fenton, J.D., 2006. One-dimensional simulation model for steady transcritical free surface flows at short length transitions. Adv. Water Resour., 29, 11, 1598-1607.10.1016/j.advwatres.2005.11.011
  31. Zobeyer, H., Steffler, P.M., 2012. Modelling plane openchannel flows by coupled depth-averaged and RANS equations. J. Hydr. Res., 50, 1, 82-88.10.1080/00221686.2011.636636
DOI: https://doi.org/10.1515/johh-2016-0028 | Journal eISSN: 1338-4333 | Journal ISSN: 0042-790X
Language: English
Page range: 281 - 288
Submitted on: Oct 8, 2015
Accepted on: Apr 15, 2016
Published on: Jul 8, 2016
Published by: Slovak Academy of Sciences, Institute of Hydrology; Institute of Hydrodynamics, Czech Academy of Sciences, Prague
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2016 Yebegaeshet T. Zerihun, published by Slovak Academy of Sciences, Institute of Hydrology; Institute of Hydrodynamics, Czech Academy of Sciences, Prague
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.