Have a personal or library account? Click to login
Droplet infiltration dynamics and soil wettability related to soil organic matter of soil aggregate coatings and interiors Cover

Droplet infiltration dynamics and soil wettability related to soil organic matter of soil aggregate coatings and interiors

Open Access
|May 2016

References

  1. Bachmann, J., Goebel, Marc-O., Woche, S.K., 2013. Small-scale contact angle mapping on undisturbed soil surfaces. Journal of Hydrology and Hydromechanics, 611, 3–8.10.2478/johh-2013-0002
  2. Blanco-Canqui, H., Lal, R., 2009. Extent of soil water repellency under long-term no-till soils. Geoderma, 149, 171–180.10.1016/j.geoderma.2008.11.036
  3. Capriel, P., Beck, T., Borchert, H., Gronholz, J., Zachmann, G., 1995. Hydrophobicity of the organic matter in arable soils. Soil Biology and Biochemistry, 27, 1453–1458.10.1016/0038-0717(95)00068-P
  4. Celi, L., Schnitzer, M., Nègre, M. 1997. Analysis of carboxyl groups in soil humic acids by a wet chemical method, Fourier-transform infrared spectroscopy and solution-state Carbon-13 nuclear magnetic resonance. A comparative study. Soil Science, 162, 189–197.
  5. Chau, H.W., Biswas, A., Vujanovic, V., Si, B.S., 2014. Relationship between the severity, persistence of soil water repellency and the critical soil water content in water repelent soils. Geoderma, 221–222, 113–220.10.1016/j.geoderma.2013.12.025
  6. Czachor, H., Hallett, P.D., Lichner, L., Jozefaciuk, G., 2013. Pore shape and organic compounds drive major changes in the hydrological characteristics of agricultural soil. European Journal of Soil Science, 64, 334–344.10.1111/ejss.12052
  7. Dekker, L.W., Ritsema, C.J., 1994. How water moves in a water repellent sandy soil. 1. Potential and actual water repellency. Water Resources Research, 30, 2507–2517.10.1029/94WR00749
  8. Demyan, M.S., Rasche, F., Schulz, E., Breulmann, M., Muller, T., Cadish, G., 2012. Use of specific peaks obtained by diffuse reflectance Fourier transformation mid-infrared spectroscopy to study the composition of organic matter in Haplic Chernozem. European Journal of Soil Science, 63, 189–199.10.1111/j.1365-2389.2011.01420.x
  9. Ellerbrock, E.H., Gerke, H.H., Bachman, J., Goebel, M.O., 2005. Composition of organic matter fractions for explaining wettability of three forest soils. Soil Science Society of America Journal, 69, 57–66.10.2136/sssaj2005.0057
  10. Ellerbrock, E.H., Gerke, H.H., Böhm, Ch., 2009. In situ DRIFT characterization of organic matter composition on soil structural surfaces. Soil Science Society of America Journal, 73, 531–540.10.2136/sssaj2008.0103
  11. Fér, M., Kodešová, R., 2012. Estimating hydraulic conductivities of the soil aggregates and their clay-organic coatings using numerical inversion of capillary rise data. Journal of Hydrology, 468–469, 229–240.10.1016/j.jhydrol.2012.08.037
  12. Gerke, H.H., 2012. Macroscopic representation of the interface between flow domains in structured soil. Vadose Zone Journal, 113, 2012.10.2136/vzj2011.0125
  13. Gerke, H.H., Köhne, J.M., 2002. Estimating hydraulic properties of soil skins from sorptivity and water retention. Soil Science Society of America Journal, 66, 26–36.10.2136/sssaj2002.2600
  14. Goebel, M.-O., Bachmann, J., Woche, S.K., Fischer, W.R., 2005. Soil wettability, aggregate stability, and the decomposition of soil organic matter. Geoderma, 128, 80–93.10.1016/j.geoderma.2004.12.016
  15. Goebel, M.-O., Bachmann, J., Woche, S.K., 2008. Modified technique to assess the wettability of soil aggregates: Comparison with contact angles measured on crushed aggregates and bulk soil. European Journal of Soil Science, 59, 1241–1252.10.1111/j.1365-2389.2008.01073.x
  16. IUSS Working Group WRB, 2014. World Reference Base for Soil Resources 2014. International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No., 106, FAO, Rome.
  17. Jirků, V., Kodešová, R., Nikodem, A., Mühlhanselová, M., Žigová, A., 2013. Temporal variability of structure and hydraulic properties of topsoil of three soil types. Geoderma, 204–205, 43–58.10.1016/j.geoderma.2013.03.024
  18. Jouquet, P., Bottinelli, N., Podwojewski, P., Hallaire, V., Tran Duc, T., 2008. Chemical and physical properties of earthworm casts as compared to bulk soil under a range of different land-use system in Vietnam. Geoderma, 146, 231–238.10.1016/j.geoderma.2008.05.030
  19. Kočárek, M., Kodešová, R., Kozák, J., Drábek, O., 2010. Field study of chlorotoluron transport and its prediction by the BPS mathematical model. Soil and Water Research, 4, 153–160.10.17221/42/2010-SWR
  20. Kodešová, R., 2009. Soil micromorphology use for modeling of a non-equilibrium water and solute movement. Plant, Soil and Environment, 55, 424–428.10.17221/137/2009-PSE
  21. Kodešová, R., Kočárek, M., Kodeš, V., Šimůnek, J., Kozák, J., 2008. Impact of soil micromorphology features on water flow and herbicide transport in soils. Vadose Zone Journal, 7, 798–809.10.2136/vzj2007.0079
  22. Kodešová, R., Vignozzi, N., Rohošková, M., Hájková, T., Kočárek, M., Pagliai, M., Kozák, J., Šimůnek, J., 2009. Impact of varying soil structure on transport processes in different diagnostic horizons of three soil types. Journal of Contaminant Hydrology, 104, 107–125.10.1016/j.jconhyd.2008.10.00819062128
  23. Kodešová, R., Šimůnek, J., Nikodem, A., Jirků V., 2010. Estimation of the dual-permeabillity model parameters using tension disk infiltrometer and Guelph permeameter. Vadose Zone Journal, 9, 213–225.10.2136/vzj2009.0069
  24. Kodešová, R., Jirků, V., Kodeš, V., Mühlhanselová, M., Nikodem, A., Žigová, A., 2011. Soil structure and soil hydraulic properties of Haplic Luvisol used as arable land and grassland. Soil and Tillage Research, 1112, 154–161.10.1016/j.still.2010.09.007
  25. Kodešová, R., Němeček, K., Kodeš, V., Žigová, A., 2012. Using dye tracer for visulization of preferential flow at macro- and microscales. Vadose Zone Journal, 11, 1–10.10.2136/vzj2011.0088
  26. Kodešová, R., Němeček, K., Žigová, A., Nikodem, A., Fér, M., 2015. Using dye tracer for visualizing roots impact on soil structure and soil porous system. Biologia, 70, 11, 1439–1443.10.1515/biolog-2015-0166
  27. Kořenková, L., Šimkovič, I., Dlapa, P., Juráni, B., Matúš, P., 2015. Identifying the origin of soil water repellency at regional level using multiple soil characteristics: The White Carpathians and Myjavska Pahorkatina Upland case study. Soil and Water Research, 10, 78–89.10.17221/28/2014-SWR
  28. Köhne, J.M., Gerke, H.H., Köhne, S., 2002. Effective diffusion coefficients of soil aggregates with surface skins. Soil Science Society of America Journal, 66, 1430–1438.10.2136/sssaj2002.1430
  29. Kubelka, P., 1948. New contributions to the optics of intensely light-scatering materials. Part I. J. Opt. Soc. Am., 38, 448–457.10.1364/JOSA.38.00044818916891
  30. Lachacz, A., Nitkiewicz, M., Kalisz, B., 2009. Water repellency of post-boggy soils with a various content of organic matter. Biologia, 643, 634–638.10.2478/s11756-009-0096-5
  31. Leelamanie, D.A.L., Karube, J., 2007. Effects of organic compounds, water content and clay on the water repellency of a model sandy soil. Soil Science and Plant Nutrition, 536, 711–719.10.1111/j.1747-0765.2007.00199.x
  32. Leelamanie, D.A.L., Karube, J., 2009. Time dependence of contact angle and its relation to repellency persistence in hydrophobized sand. Soil Science and Plant Nutrition, 554, 457–461.10.1111/j.1747-0765.2009.00387.x
  33. Leelamanie, D.A.L., Karube, J., 2011. Water-dependent repellency of model soils as affected by clay. Soil Science and Plant Nutrition, 571, 7–10.10.1080/00380768.2011.551836
  34. Leelamanie, D.A.L., Karube, J., Yoshida, A., 2010. Clay effects on the contact angle and water drop penetration time of modeled soils. Soil Science and Plant Nutrition, 563, 371–375.10.1111/j.1747-0765.2010.00471.x
  35. Leue, M., Ellerbrock, R.H., Gerke, H.H., 2010. DRIFT mapping of organic matter composition at intact soil aggregate surfaces. Vadose Zone Journal, 9, 317–324.10.2136/vzj2009.0101
  36. Leue, M., Gerke, H.H., Ellerbrock, R.H., 2013. Millimetre-scale distribution of organic matter composition at intact biopore and crack surfaces. European Journal of Soil Science, 64, 757–769.10.1111/ejss.12098
  37. Leue, M., Gerke, H.H., Godow, S., 2015. Droplet infiltration and organic matter composition of intact crack and biopore surfaces from clay-illuvial horizons. Journal of Plant Nutrition and Soil Science, 178, 250–260.10.1002/jpln.201400209
  38. Lichner, L., Dlapa, P., Doerr, S.H., Mataix-Solera, J., 2006. Evaluation of different clay minerals as aditives for soil water repellency allevation. Applied Clay Science, 31, 238–248.10.1016/j.clay.2005.10.012
  39. Lipiec, J., Turski, M., Hajnos, M., Świeboda, R., 2015. Pore structure, stability and repellency of earthworm casts and natural aggregates in loess soil. Geoderma, 243–244, 124–129.10.1016/j.geoderma.2014.12.026
  40. McKissock, I., Walker, E.L., Gilkes, R.J., Carter, D.J., 2000. The influence of clay type on reduction of water repellency by applied clays. a review of some West Australian work. Journal of Hydrology, 231–232, 323–332.10.1016/S0022-1694(00)00204-3
  41. McKissock, I., Gilkes, R.J., Walker, E.L., 2002. The reduction of water repellency by added clay is influenced by clay and soil properties. Applied Clay Science, 20, 225–241.10.1016/S0169-1317(01)00074-6
  42. Moore, D., Reynolds, R.R., 1997. X-Ray Diffraction and the Identification and Analyzis of Clay Minerals, 2nd ed. Oxford, New York. Oxford University Press. ISBN 0195087135, 378 p.
  43. Nobles, M.M., Wildings, L.P., McInnes, K.J., 2003. Soil structural interfaces in some Texas Vertisols and their impact on solute transport. Catena, 543, 477–493.10.1016/S0341-8162(03)00122-X
  44. Nobles, M.M., Wildings, L.P., McInnes, K.J., 2004. Submicroscopic measurements of tracer distribution related to surface features of soil aggregates. Geoderma, 123, 83–97.10.1016/j.geoderma.2004.01.028
  45. Rogasik, H., Schrader, S., Onasch, I., Kiesel, J., Gerke, H.H., 2014. Micro-scale dry bulk density variation around earthworm Lumbricus terrestris L. burrows based on X-ray computed tomography. Geoderma, 213, 471–477.10.1016/j.geoderma.2013.08.034
  46. Schaumann, G.E., Diehl, D., Bertmer, M., Jeger, A., Conte, P., Alonzo, G., Bachmann, J., 2013. Combined proton NMR wideline and NMR relaxometry to study SOM-water interaction of creation-treated soils. Journal of Hydrology and Hydromechanics, 61, 1, 50–63.10.2478/johh-2013-0007
  47. Schrader, S., Rogasik, H., Onasch, I., Jégou, D., 2007. Assessment of soil structural differentiation around earthworm burrows by means of X-ray computed tomography and scanning electron microscopy. Geoderma, 137, 378–387.10.1016/j.geoderma.2006.08.030
  48. STATGRAPHICS Centurion, 2014. STATGRAPHICS Centurion XVII. User Manual. Version 17.1.8.0
  49. Vogelmann, E.S., Reichert, J.M., Prevedello, J., Consensa, C.O.B., Oliveira, A.É., 2013. Threshold water content beyond which hydrophobic soil become hydrophilic. The role of soil texture and organic matter content. Geoderma, 209–210, 177–187.10.1016/j.geoderma.2013.06.019
  50. Woche, S.K., Goebel, M.-O., Kirkham, M.B., Horton, R., Van der Ploeg, R.R., Bachmann, J., 2005. Contact angle of soils as Affected by depth, texture and land management. European Journal of Soil Science, 56, 239–251.10.1111/j.1365-2389.2004.00664.x
  51. Zavala, L.M., García-Morena, J., Gordillo-Rivero, Á.J., Jordán, A., Mataix-Solera, J., 2014. Natural soil water repellency in different types of Mediterranean woodlands. Geoderma, 226–227, 170–178.10.1016/j.geoderma.2014.02.009
DOI: https://doi.org/10.1515/johh-2016-0021 | Journal eISSN: 1338-4333 | Journal ISSN: 0042-790X
Language: English
Page range: 111 - 120
Submitted on: Dec 11, 2015
|
Accepted on: Mar 11, 2016
|
Published on: May 12, 2016
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2016 Miroslav Fér, Martin Leue, Radka Kodešová, Horst H. Gerke, Ruth H. Ellerbrock, published by Slovak Academy of Sciences, Institute of Hydrology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.