Have a personal or library account? Click to login
Spatial patterns of wetting characteristics in grassland sandy soil Cover

Spatial patterns of wetting characteristics in grassland sandy soil

Open Access
|May 2016

References

  1. Bedrna, Z., Orfánus, T., 2013. A new classification of soil textures and its application to the geography of soils in Slovakia. Geografický Časopis, 65, 2, 161–169. (In Slovak.)
  2. Carlson, R.E., Foley, T.A., 1991. Radial Basis Interpolation Methods on Track Data. Lawrence Livermore National Laboratory, Livermore, CA, USA. UCRL-JC-1074238
  3. Close, K.R., Frasier, G., Dunn, G.H., Loftis, J.C., 1998. Tension infiltrometer contact interface evaluation by the use of potassium iodide tracer. Trans. ASAE, 41, 995–1004.10.13031/2013.17272
  4. Decagon, 2007. Minidisk Infiltrometer User's Manual. Version 6. Decagon Devices, Inc., Pullman.
  5. Dekker, L.W., Ritsema, C.J., 1994. How water moves in a water-repellent sandy soil: 1. Potential and actual water repellency. Water Resources Research, 30, 2507–2517.10.1029/94WR00749
  6. Dekker, L.W., Ritsema, C.J., Wendroth, O., Jarvis, N., Oostindie, K., Pohl, W., Larsson, M., Gaudet, J., 1999. Moisture distribution and wetting rates of soils at experi-experimental fields in the Netherland, France, Sweden and Germany. Journal of Hydrology, 215, 4–22.10.1016/S0022-1694(98)00258-3
  7. Dekker, L.W., Doerr, S.H., Oostindie, K., Ziogas, A.K., Ritsema, C.J., 2001. Water repellency and critical soil water content in a dune sand. Soil Science Society of America Journal, 65, 6, 1667–1674.10.2136/sssaj2001.1667
  8. Doerr, S.H., Thomas, A.D., 2000. The role of soil moisture in controlling water repellency: new evidence from forest soils in Portugal. Journal of Hydrology, 231–232, 134–147.10.1016/S0022-1694(00)00190-6
  9. Doerr, S.H., Shakesby, R.A., Walsh, R.P.D., 2000. Soil water repellency: its causes, characteristics and hydro-geomorphological significance. Earth-Science Reviews, 51, 33–65.10.1016/S0012-8252(00)00011-8
  10. Dohnal, M., Dusek, J., Vogel, T., 2010. Improving hydraulic conductivity estimates from minidisk infiltrometer measurements from soils with wide pore-size distributions. Soil Science Society of America Journal, 74, 804–811.10.2136/sssaj2009.0099
  11. Fodor, N., Sándor, R., Orfanus, T., Lichner, L., Rajkai, K., 2011. Evaluation method dependency of measured saturated hydraulic conductivity. Geoderma, 165, 60–68.10.1016/j.geoderma.2011.07.004
  12. Goebel, M.O., Bachmann, J., Reichstein, M., Janssens, I.A., Guggenberger, G., 2011. Soil water repellency and its implications for organic matter decomposition – is there a link to extreme climatic events? Global Change Biology, 17, 2640–2656.10.1111/j.1365-2486.2011.02414.x
  13. Green, T.R., Ahuja, L.R., Benjamin, J.G., 2003. Advances and challenges in predicting agricultural management effects on soil hydraulic properties. Geoderma, 116, 3–27.10.1016/S0016-7061(03)00091-0
  14. Hallett, P.D., Nunan, N., Douglas, J.T., Young, I.M., 2004. Millimeter-scale spatial variability in soil water sorptivity: scale, surface elevation, and subcritical repellency effects. Soil Science Society of America Journal, 68, 352–358.10.2136/sssaj2004.3520
  15. Haverkamp, R., Ross, P.J., Smettem, K.R.J., Parlange, J.Y., 1994. Three-dimensional analysis of infiltration from the disk infiltrometer. 2. Physically based infiltration equation. Water Resources Research, 30, 2931–2935.10.1029/94WR01788
  16. Hendrickx, J.M.H., Dekker, L.W., 1991. Experimental evidence of unstable wetting fronts in non-layered soils. In: Gish, T.J., Shirmohammadi, A. (Eds): Proc. ASAE National Symposium on Preferential flow, Chicago, Illinois, pp. 22–31.
  17. Hendrickx, J.M.H., Yao, T.M., 1996. Prediction of wetting front stability in dry field soils using soil and precipitation data. Geoderma, 70, 2–4, 265–280.10.1016/0016-7061(95)00082-8
  18. Hendrickx, J.M.H., Flury, M., 2001. Uniform and preferential flow mechanisms in the vadose zone. In: National Research Council (Eds.): Conceptual Models of Flow and Transport in the Fractured Vadose Zone. National Academy Press, Washington DC, pp. 149–187.
  19. Hills, R.C., Reynolds, S.G., 1969. Illustrations of soil moisture variability in selected areas and plots of different sizes. Journal of Hydrology, 8, 27–47.10.1016/0022-1694(69)90029-8
  20. Iske, A., 2003. Radial basis functions: basics, advanced topics and meshfree methods for transport problem. Seminar of Mathematics, pp. 247–274.
  21. Jirků, V., Kodešová, R., Nikodem, A., Mühlhanselová, M., Žigová, A., 2013. Temporal variability of structure and hydraulic properties of topsoil of three soil types. Geoderma, 204–205, 43–58.10.1016/j.geoderma.2013.03.024
  22. Kodešová, R., Jirků, V., Kodeš, V., Mühlhanselová, M., Nikodem, A., Žigová, A., 2011. Soil structure and soil hydraulic properties of Haplic Luvisol used as arable land and grassland. Soil & Tillage Research, 111, 154–161.10.1016/j.still.2010.09.007
  23. Kořenková, L., Šimkovic, I., Dlapa, P., Juráni, B., Matúš, P., 2015. Identifying the origin of soil water repellency at regional level using multiple soil characteristics: The White Carpathians and Myjavska pahorkatina Upland case study. Soil & Water Research, 10, 2, 78–89.10.17221/28/2014-SWR
  24. Leighton-Boyce, G., Doerr, S.H., Shakesby, R.A, Walsh, R.P.D., Ferreira, A.J.D., Boulet, A.K., Coelho, C.O.A., 2005. Temporal dynamics of water repellency and soil moisture in eucalypt plantations, Portugal. Australian Journal of Soil Research, 43, 3, 269–280.10.1071/SR04082
  25. Letey, J., Carrillo, M.L.K., Pang, X.P., 2000. Approaches to characterize the degree of water repellency. Journal of Hydrology, 231–232, 61–65.10.1016/S0022-1694(00)00183-9
  26. Lichner, Ľ., Babejová, N., Dekker, L.W., 2003. Effects of kaolinite and drying temperature on the persistence of soil water repellency induced by humic acids. Rostlinná Výroba, 48, 203–207.10.17221/4225-PSE
  27. Lichner, L., Eldridge, D.J., Schacht, K., Zhukova, N., Holko, L., Šír, M., Pecho, J., 2011. Grass cover influences hydrophysical parameters and heterogeneity of water flow in a sandy soil. Pedosphere, 21, 6, 719–729.10.1016/S1002-0160(11)60175-6
  28. Mataix-Solera, J., Arcenegui, V., Guerrero, C., Jordán, M., Dlapa, P., Tessler, N., Wittenberg, L., 2008. Can terra rossa become water repellent by burning? A laboratory approach. Geoderma, 147, 178–184.10.1016/j.geoderma.2008.08.013
  29. Minasny, B., McBratney, A.B., 2000. Estimation of sorptivity from disk-permeameter measurements. Geoderma, 95, 305–324.10.1016/S0016-7061(99)00096-8
  30. Nielsen, D.R., Biggar, J.W., Erh, K.T., 1973. Spatial variability of field - measured soil – water properties. Hilgardia, 42, 215–259.10.3733/hilg.v42n07p215
  31. Orfánus, T., Bedrna, Z., Lichner, Ľ., Hallett, P.D., Kňava, K., Sebíň, M., 2008. Spatial variability of water repellency in pine forest soil. Soil & Water Research, 3, Special Issue 1, 123–129.10.17221/11/2008-SWR
  32. Orfánus, T., Dlapa, P., Fodor, N., Rajkai, K., Sándor, R., Nováková, K., 2014. How severe and subcritical water repellency determines the seasonal infiltration in natural and cultivated sandy soils. Soil & Tillage Research, 135, 49–59.10.1016/j.still.2013.09.005
  33. Pekárová, P., Pekár, J., Lichner, Ľ., 2015. A new method for estimating soil water repellency index. Biologia, 70, 11, 1450–1455.10.1515/biolog-2015-0178
  34. Philip, J.R., 1957. The theory of infiltration: 4. Sorptivity and algebraic infiltration equations. Soil Science, 84, 257–264.10.1097/00010694-195709000-00010
  35. Ritsema, C.J., Dekker, L.W., 1994. Soil moisture and dry bulk density patterns in bare dune sands. Journal of Hydrology, 154, 107–131.10.1016/0022-1694(94)90214-3
  36. Ritsema, C.J., Dekker, L.W., van der Elsen, E.G.M., Oostindie, K., Nieber, J.L., 1997. Recurring fingered flow pathways in a water repellent sandy field soil. Hydrology and Earth System Sciences, 4, 777–786.10.5194/hess-1-777-1997
  37. Ritsema, C.J., van Dam, J.C., Dekker, L.W., Oostindie, K., 2005. A new modelling approach to simulate preferential flow and transport in water repellent porous media: Model structure and validation. Australian Journal of Soil Research, 43, 361–369.10.1071/SR05054
  38. Schlesinger, W.H., Raikes, J.A., Hartley, A.E., Cross, A.F., 1996. On the spatial pattern of soil nutrients in desert ecosystem. Ecology, 77, 364–374.10.2307/2265615
  39. Taiz, L., Zeiger, E., Møller, I.M., Murphy, A., 2015. Plant Physiology and Development. 6th Edition. Sinauer Associates, Inc, Sunderland, Massachusetts, USA, 761 p. ISBN: 978-1-60535-255-8
  40. Täumer, K., Stoffregen, H., Wessolek, G., 2005. Determination of repellency distribution using soil organic matter and water content. Geoderma, 125, 1–2, 107–115.10.1016/j.geoderma.2004.07.004
  41. Tillman, R.W., Scotter, D.R., Wallis, M.G., Clothier, B.E., 1989. Water repellency and its measurement by using intrinsic sorptivity. Australian Journal of Soil Research, 27, 637–644.10.1071/SR9890637
  42. Vandervaere, J.P., Peugeot, C., Vauclin, M., Angulo Jaramillo, R., Lebel, T., 1997. Estimating hydraulic conductivity of crusted soils using disk infiltrometers and minitensiometers. Journal of Hydrology, 188–189, 209–223.10.1016/S0022-1694(96)03160-5
  43. Warrick, A.W., Mullen, G.J., Nielsen, D.R., 1977. Predictions of the soil water flux based upon field-measured soil-water properties. Soil Science Society of America Journal, 41, 14–19.10.2136/sssaj1977.03615995004100010009x
  44. White, I., Sully, M.J., 1987. Macroscopic and microscopic capillary length and time scales from field infiltration. Water Resources Research, 23, 1514–1522.10.1029/WR023i008p01514
  45. Wooding, R., 1968. Steady infiltration from a shallow circular pond. Water Resources Research, 4, 1259–1273.10.1029/WR004i006p01259
  46. WRB, 2014. E-ISBN 978-92-5-108370-3 (PDF).
  47. Zhang, R., 1997. Determination of soil sorptivity and hydraulic conductivity from the disk infiltrometer. Soil Science Society of America Journal, 61, 1024–1030.10.2136/sssaj1997.03615995006100040005x
DOI: https://doi.org/10.1515/johh-2016-0010 | Journal eISSN: 1338-4333 | Journal ISSN: 0042-790X
Language: English
Page range: 167 - 175
Submitted on: Apr 30, 2015
Accepted on: Nov 24, 2015
Published on: May 12, 2016
Published by: Slovak Academy of Sciences, Institute of Hydrology; Institute of Hydrodynamics, Czech Academy of Sciences, Prague
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2016 Tomáš Orfánus, Dagmar Stojkovová, Kálmán Rajkai, Henryk Czachor, Renáta Sándor, published by Slovak Academy of Sciences, Institute of Hydrology; Institute of Hydrodynamics, Czech Academy of Sciences, Prague
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.