Have a personal or library account? Click to login
Inlet effects on roll-wave development in shallow turbulent open-channel flows Cover

Inlet effects on roll-wave development in shallow turbulent open-channel flows

Open Access
|Jan 2016

References

  1. Balmforth, N.J., Mandre, S., 2004. Dynamics of roll waves. J. Fluid Mech., 514, 1–33.10.1017/S0022112004009930
  2. Berlamont, J.F., 1976. Roll-waves in inclined rectangular open channels, A2, BHRA Fluid Eng., Newcastle, U.K., 13–26.
  3. Berlamont, J.F., Vanderstappen, N., 1981. Unstable turbulent flow in open channels. J. Hydraul. Div., 1074, 427–449.10.1061/JYCEAJ.0005647
  4. Brock, R., 1967. Development of roll waves in open channels. W.M. Keck Lab. of Hydraul. and Water Resources, California Inst. of Tech., Report KH-R-16, 226.
  5. Brock, R., 1969. Development of roll-wave trains in open channel. J. Hydraul. Div. ASCE, 95, HY4, 1401–1427.10.1061/JYCEAJ.0002132
  6. Brock, R., 1970. Periodic permanent roll waves. J. Hydraul. Div., 9612, 2565–2580.10.1061/JYCEAJ.0002801
  7. Cao, Z., Hu, P., Hu, K., Pender, G., Liug Q., 2015. Modelling roll waves with shallow water equations and turbulent closure. J. Hydraul. Res., 53, 2, 161–177.10.1080/00221686.2014.950350
  8. Chanson, H., 2004. The Hydraulics of Open Channel Flow: an Introduction. Elsevier, Amsterdam.10.1016/B978-075065978-9/50006-4
  9. Di Cristo, C., Vacca, A., 2005. On the convective nature of roll waves instability. J. Appl. Math., 2005, 259–271.10.1155/JAM.2005.259
  10. Di Cristo, C., Iervolino, M., Vacca, A., Zanuttigh, B., 2008. Minimum channel length for roll-waves generation. J. Hydraul. Res., 46, 1, 73–79.10.1080/00221686.2008.9521844
  11. Di Cristo, C., Iervolino, M., Vacca, A., Zanuttigh, B., 2010. Influence of relative roughness and Reynolds number on the roll waves spatial evolution. J. Hydraul. Eng., 136, 1, 24–33.10.1061/(ASCE)HY.1943-7900.0000139
  12. Di Cristo, C., Iervolino, M., Vacca, A., 2012a. Green’s function of the linearized Saint–Venant equations in laminar and turbulent flows. Acta Geophysica, 60, 1, 173–190.10.2478/s11600-011-0039-8
  13. Di Cristo, C., Iervolino, M., Vacca, A., 2012b. Discussion of “Analysis of dynamic wave model for unsteady flow in an open channel”. J. Hydr. Engrg. ASCE, 138, 915–917.10.1061/(ASCE)HY.1943-7900.0000538
  14. Di Cristo, C., Iervolino, M., Vacca, A., 2015. On the stability of gradually varying mudflows in open channels. Meccanica, 50, 4, 963–979.10.1007/s11012-014-0075-y
  15. Dracos, T.A., Glenne, B., 1967. Stability criteria for open-channel flow. J. Hydraul. Div., 93(HY6), 79–101.10.1061/JYCEAJ.0001737
  16. Gottlieb, S., Shu, C.W., 1998. Total variation diminishing Runge–Kutta schemes. Math. Comp., 67, 221, 73–85.10.1090/S0025-5718-98-00913-2
  17. Harten, A., 1983. High resolution schemes for hyperbolic conservation laws. J. Comput. Phys. 49, 3, 357–393.10.1016/0021-9991(83)90136-5
  18. Huang, Z., Lee, J.J., 2015. Modeling the Spatial Evolution of Roll Waves with Diffusive Saint Venant Equations. J. Hydraul. Eng., 141, 2, 06014022-1.10.1061/(ASCE)HY.1943-7900.0000959
  19. Kenyon, K.E., 1998. Roll wave theory. Phys. Essays, 11, 531–540.10.4006/1.3025334
  20. Kevorkian, J., Yu, J., Wang, L., 1995. Weakly nonlinear waves for a class of linearly unstable hyperbolic conservation laws with source terms. SIAM Journal on Applied Mathematics, 55, 2, 446–484.10.1137/S003613999326931X
  21. Khatsuria R.M., 2004. Hydraulics of Spillways and Energy Dissipators. CRC Press.10.1201/9780203996980
  22. Kranenburg, C., 1990. On the stability of gradually varying flow in wide open channels. J. Hydraul. Res., 28, 5, 621–628, doi:10.1080/00221689009499050.10.1080/00221689009499050
  23. Kranenburg, C., 1992. On the evolution of roll waves. J. Fluid Mech., 245, 249–261.10.1017/S0022112092000442
  24. Liggett, J.A., 1975. Stability. Unsteady flow in open channel. In: Mahmood, K., Yevjevich, V. (Eds.): Water Resources Publications, Vol. 1. Englewood, Colorado.
  25. Liu, K.F., Mei, C.C., 1989. Slow spreading of a sheet of Bingham fluid on an inclined plane. J. Fluid Mech., 207, 505–529.10.1017/S0022112089002685
  26. Liu, Q.Q., Chen, L., Li, J.C., Singh, V.P., 2005. Roll waves in overland flow. J. Hydrol. Eng., 10, 2, 110–117.10.1061/(ASCE)1084-0699(2005)10:2(110)
  27. Logan, M., Iverson, R.M., 2007. Video documentation of experiments at the USGS debris-flow flume 1992–2006 (amended to include 2007–2013). US Geological Survey, 2007-1315.10.3133/ofr20071315
  28. Montuori, C., 1963. Discussion of stability aspect of flow in open channels. J. Hydraul. Div., 894, 264–273.
  29. Murdock, J.A., 1999. Perturbations: Theory and Methods. Classic in Applied Mathematics, SIAM.10.1137/1.9781611971095
  30. Ponce, V.M., Simon, D.B., 1977. Shallow water propagation in open channel flow. J. Hydraul. Div., 103, 1461–1476.10.1061/JYCEAJ.0004892
  31. Ridolfi, L., Porporato, A., Revelli R., 2006. Green’s function of the linearized de Saint–Venant equations. J. Eng. Mech., 132, 2, 125–132.10.1061/(ASCE)0733-9399(2006)132:2(125)
  32. Roe, P.L., 1986. Characteristic-based schemes for the Euler equations. Ann. Rev. Fluid Mech., 18, 337–365, doi:10.1146/annurev.fl.18.010186.00200510.1146/annurev.fl.18.010186.002005
  33. Stoker, J.J., 1957. Water Waves, the Mathematical Theory with Applications. Interscience, London.
  34. Supino, G., 1960. Sopra le onde di traslazione nei canali. [Bore waves in channels]. Rend. Accad. Naz. Lincei, 295, 6, 543–552. (In Italian.)
  35. Thual, O., Plumerault, L.R., Astruc, D., 2010. Linear stability of the 1D Saint-Venant equations and drag parameterizations. J. Hydraul. Res., 48, 3, 348–353.10.1080/00221686.2010.481837
  36. Witham, G.B., 1974. Linear and Nonlinear Waves. John Wiley & Sons Interscience, New York.
  37. Venutelli M., 2011. Analysis of dynamic wave model for unsteady flow in an open channel. J. Hydr. Engrg. ASCE, 137, 9, 1072–1078.10.1061/(ASCE)HY.1943-7900.0000405
  38. Zanuttigh, B., Lamberti, A. 2002. Roll waves simulation using shallow water equations and weighted average flux method. J. Hydraul. Res., 405, 610–622.
  39. Zoppou, C., Roberts, S., 2003. Explicit schemes for dam-break simulations. J. Hydr. Engrg. ASCE, 129, 1, 11–34.10.1061/(ASCE)0733-9429(2003)129:1(11)
DOI: https://doi.org/10.1515/johh-2016-0003 | Journal eISSN: 1338-4333 | Journal ISSN: 0042-790X
Language: English
Page range: 45 - 55
Submitted on: Jun 19, 2015
Accepted on: Oct 16, 2015
Published on: Jan 26, 2016
Published by: Slovak Academy of Sciences, Institute of Hydrology; Institute of Hydrodynamics, Czech Academy of Sciences, Prague
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2016 Francesca Campomaggiore, Cristiana Di Cristo, Michele Iervolino, Andrea Vacca, published by Slovak Academy of Sciences, Institute of Hydrology; Institute of Hydrodynamics, Czech Academy of Sciences, Prague
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.