Have a personal or library account? Click to login

Spatial interpolation of point velocities in stream cross-section

Open Access
|Jan 2015

References

  1. Baudin, M., Consortium Scilab - DIGITEO, 2011. Introduction to Scilab. Consortium Scilab - DIGITEO, URL http://forge.scilab.org/index.php/p/docintrotoscilab/downloads/311/.
  2. Bookstein, F., 1989. Principal warps: Thin-plate splines and the decomposition of deformations. IEEE Transaction on Pattern Analysis and Machine Intelligence, 11, 6, 567-585.10.1109/34.24792
  3. Clark, I., 2001. Practical Geostatistics. Geostokos limited, Alloa.
  4. ČSN EN ISO 748, 2008. Hydrometrie - Měření průtoku kapalin v otevřených korytech použitím vodoměrných vrtulí a plováků. [Hydrometry - Measurement of liquid flow in open channels using current - meters or floats]. Český normalizační institut, Praha. (In Czech.)
  5. Dyn, N., Levin, D., Rippa, S., 1986. Numerical procedures for surface fitting of scattered data by radial functions. Society for Industrial and Applied Mathematics, 7, 2, 639-659.10.1137/0907043
  6. Fedorov, V., 1987. Kriging and other estimators of spatial field characteristics (with special reference to environmental studies): working paper. IIASA, Laxenburg.
  7. Journel, A.G., Rossi, M.E., 1988. When do we need a trend model? Study on statistics and environmental factors in health (SIMS). Stanford University, Stanford (California).
  8. Madsen, H., van Griensven, A., Hojbjerk, A.L., 2010. Model calibration and validation in model-based water management. In: Vanrolleghem, P.A. (Ed.): Modelling Aspects of Water Framework Directive Implementation. IWA Publishing, London.
  9. Raid, I., Kusnezowa, T., Seewig, J., 2013. Application of ordinary kriging for interpolation of micro-structured technical surfaces. Measurement Science & Technology, 24, 9, 095201.10.1088/0957-0233/24/9/095201
  10. Sanabria, L.A., Qin, X., Li, J., Cechet, R.P., Lucas, C., 2013. Spatial interpolation of McArthur's Forest Fire Danger Index across Australia: Observational study. Environmental Modelling & Software, 50, 37-50.10.1016/j.envsoft.2013.08.012
  11. Starý, M., 2012. Personal communication by email on February 16.
  12. Stošić, B.D., Silva, J.R.S., Filho, M.C., Cantalice, J.R.B., 2012. Optimizing river discharge measurements using Monte Carlo Markov Chain. Journal of Hydrology, 450-451, 199-205.10.1016/j.jhydrol.2012.04.058
  13. Ünal, H.B., Özcakal, E., 2011. Determination of velocity dispersion profiles in open canals using different interpolation methods. Scientific Research and Essays, 6, 15, 3272-3280.
  14. Venables, W.N., Smith, D.M., The R Core Team, 2014. An introduction to R. The R Core Team. URL http://cran.rproject. org/doc/manuals/R-intro.pdf.
  15. Wackernagel, H., 2003. Multivariate Geostatistics: an Introduction with Applications. Springer, Berlin.10.1007/978-3-662-05294-5
  16. Webster, R., Oliver, M.A., 2007. Geostatistics for Environmental Scientists. Second edition. John Wiley & Sons Ltd, Chichester.10.1002/9780470517277
  17. Yao, X., Fu, B., Lü, Y., Sun, F., Wang, S., Liu, M., 2013. Comparison of four spatial interpolation methods for estimating soil moisture in a complex terrain catchment.PLoS ONE, 8, 1, e54660. 10.1371/journal.pone.0054660355300123372749
DOI: https://doi.org/10.1515/johh-2015-0006 | Journal eISSN: 1338-4333 | Journal ISSN: 0042-790X
Language: English
Page range: 21 - 28
Submitted on: Mar 31, 2014
Accepted on: Oct 6, 2014
Published on: Jan 28, 2015
Published by: Slovak Academy of Sciences, Institute of Hydrology; Institute of Hydrodynamics, Czech Academy of Sciences, Prague
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2015 Eliška Hasníková, Jiří Pavlásek, Marek Vach, published by Slovak Academy of Sciences, Institute of Hydrology; Institute of Hydrodynamics, Czech Academy of Sciences, Prague
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.