Have a personal or library account? Click to login
Convolution implementation with a novel approach of DGHM multiwavelet image transform Cover

Convolution implementation with a novel approach of DGHM multiwavelet image transform

Open Access
|Jan 2018

References

  1. [1] K. Rajakumar and T. Arivoli, “Implementation of Multiwavelet Transform Coding for Lossless Image Compression”, Proc. of International Conference on Information Communication and Embedded Systems (ICICES), Chennai, 2013, pp. 634–637.10.1109/ICICES.2013.6508286
  2. [2] K. Bao and X. G. Xia, “Image Compression Using a New Discrete Multiwavelet Transform and a New Embedded Vector Quantization”, IEEE Trans. on Circuits and Systems for Video Technology, vol. 10, no. 6, 2000, pp. 833–842.10.1109/76.867920
  3. [3] N. Sriraam and R. Shyamsunder, “3-D Medical Image Compression Using 3-D Wavelet Coders”, Digital Signal Processing, vol. 21, no. 1, 2011, pp. 100–109.10.1016/j.dsp.2010.06.002
  4. [4] J. Mihalík, J. Zavacký and J. Dzivý, “Perfect Reconstruction 2DQMF Bank for Subband Image Coding”, Journal of Electrical Engineering, vol. 47, no. 7-8, 1996, pp. 195–201.
  5. [5] O. Kováč and J. Mihalík, “Lossless Encoding of 3D Human Head Model Textures”, Acta Electrotechnica et Informatica, vol. 15, no. 3, 2015, pp. 18–23.10.15546/aeei-2015-0024
  6. [6] B. E. Usevitch, “A Tutorial on Modern Lossy Wavelet Image Compression: Foundations of JPEG 2000”, IEEE Signal Processing Mag., vol. 18, no. 5, 2001, pp. 22–35.10.1109/79.952803
  7. [7] M. B. Martin and A. E. Bell, “New Image Compression Techniques Using Multiwavelets and Multiwavelet Packets”, IEEE Trans. on Image Processing, vol. 10, no. 4, 2001, pp. 500–510.10.1109/83.913585
  8. [8] W. Kim and Ch. Li, “On Preconditioning Multiwavelet System for Image Compression”, International Journal of Wavelets, Multiresolution and Information Processing, vol. 1, no. 1, 2003, pp. 51–74.10.1142/S0219691303000049
  9. [9] F. Keinert, “”, Wavelets and Multiwavelets, Champan & Hall/CRC, 2004.10.1201/9780203011591
  10. [10] C. K. Chui and J. A. Lian, “A Study of Orthonormal Multi wavelets”, Applied Numerical Mathematics, vol. 20, no. 3, 1996, pp. 273–298.10.1016/0168-9274(95)00111-5
  11. [11] T. Ch. Hsung, D. P. Lun, Y. Shum and K. C. Ho, “Generalized Discrete Multiwavelet Transform with Embedded Orthogonal Symmetric Prefilter Bank”, IEEE Transactions on Signal Processing, vol. 55, no. 12, 2007, pp. 5619–5629.10.1109/TSP.2007.901650
  12. [12] R. Kusum and R. Sharma, “Study of Image Fusion Using Discrete Wavelet and Multiwavelet Transform”, International Journal of Innovative Research Computer and Communication Engineering, vol. 1, no. 4, 2013, pp. 95–99.
  13. [13] G. C. Donovan, J. S. Geronimo, D. P. Harding and P. R. Massopust, “Connstruction of Orthogonal Wavelets Using Fraction Interpolation Functions”, SIAM Journal on Mathematical Analysis, vol. 27, no. 4, 1996, pp. 1158–1192.10.1137/S0036141093256526
  14. [14] L. Wei, “An Image Coding Method Based on Multi Wavelet Transform”, 4th International Conference on Image and Signal Processing, vol. 2, 2011, pp. 607–610.
  15. [15] V. Strela, P. Heller, G. Strang, P. Topiwala and C. Heil, “The Application of Multiwavelet Filter Banks to Signal and Image Processing”, IEEE Trans. Image Processing, vol. 8, no. 4, 1999, pp. 548–563.10.1109/83.75374218262898
  16. [16] T. S. Anand, K. Narasimhan and P. Saravanan, “Performance Evaluation of Image Fusion Using the Multi Wavelet and Curvelet Transforms”, IEEE International Conference on Advances Engineering, Science and Management (ICAESM), 2012, pp. 121–129.
  17. [17] D. Dia et al, “Multi-level Discrete Wavelet Transform Architecture Design”, Proceedings of the World Congress on Engineering, WCE 2009, vol. I., London, U.K., 2009, pp. 1–2.
  18. [18] J. Y. Tham, L. X. Shen, S. L. Lee and H. H. Tan, “A General Approach for Analysis and Application of Discrete Multiwavelet Transforms”, IEEE Trans. on Signal Processing, vol. 48, no. 2, 2000, pp. 457–464.10.1109/78.823972
  19. [19] I. Ram, M. Elad and I. Cohen, “Generalized Tree Based Wavelet Transform”, IEEE Transactions on Signal Processing, vol. 59, no. 9, 2011, pp. 4199–4210.10.1109/TSP.2011.2158428
  20. [20] D. P. Hardin and D. W. Roach, “Multi-Wavelet Prefilters part I :Orthogonal Prefilters Pre serving Approximation Order”, IEEE Transactions on Circuits and Systems II, vol. 45, 1998, pp. 1106–1112.10.1109/82.718820
  21. [21] K. Hardin, D. P. Attakitmongcol and D. M. Wilkes, “Multi-wavelet Prefilters – part II: Optimal Orthogonal Prefilters”, IEEE Trans. on Image Processing, vol. 10, 2001, pp. 1476–1487.10.1109/83.95153418255492
  22. [22] G. Iovane and P. Giordano, “Wavelets and Multiresolution Analysis: Nature of ε(∞) Cantorian Space Time”, Chaos Solitons & Fractals, vol. 32, 2007, pp. 896–910.10.1016/j.chaos.2005.11.097
  23. [23] A. Fathi and A. R. N. Nilchi, “Efficient Image Denoising Method Based on a New Adaptive Wavelet Packet Thresholding Function”, IEEE Transaction of Image Processing, vol. 21, no. 9, 2012, pp. 3981–3990.10.1109/TIP.2012.220049122645265
DOI: https://doi.org/10.1515/jee-2017-0080 | Journal eISSN: 1339-309X | Journal ISSN: 1335-3632
Language: English
Page range: 455 - 462
Submitted on: Jan 31, 2017
Published on: Jan 19, 2018
Published by: Slovak University of Technology in Bratislava
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2018 Ondrej Kovac, Jan Mihalik, Iveta Gladisova, published by Slovak University of Technology in Bratislava
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.