Have a personal or library account? Click to login
Application of Input–State of the System Transformation for Linearization of Selected Electrical Circuits Cover

Application of Input–State of the System Transformation for Linearization of Selected Electrical Circuits

Open Access
|Jun 2016

References

  1. [1] LAMBERT, J. D. : Numerical Methods for Ordinary Differential Systems, John Wiley & Sons, Chichester, 1991.
  2. [2] QUARTERONI, A.-SACCO, R.-SALERI, F. : Numerical Mathematics, Springer-Verlag, New York, 2000.
  3. [3] ATKINSON, K.-HAN, W.-STEWART, D. : Numerical Solution of Ordinary Differential Equations, John Wiley & Sons, Inc., Hoboken, New Jersey, 2009.10.1002/9781118164495
  4. [4] NAJM, F. N. : Circuit Simulation, John Wiley & Sons, Inc., Hoboken, 2010.10.1002/9780470561218
  5. [5] BROCKETT, R. W. : Nonlinear Systems and Differential Geometry, Proc. Of IEEE 64 No. 1 (1976), 61-71.10.1109/PROC.1976.10067
  6. [6] JAKUBCZYK, B.-RESPONDEK, W. : On Linearization of Control Systems, Bull. Acad. Polonaise, Sci., Ser. Sci. Math. 28 (1980), 517-522.
  7. [7] BYRNES, C. I.-ISIDORI, A. : Local Stabilization of Minimum Phase Nonlinear Systems, Syst. Control Lett. 11 (1988), 9-19.10.1016/0167-6911(88)90105-3
  8. [8] CELIKOVSKY, S.-NIJMEIJER, H. : Syst. Control Lett. 27 No. 3 (1996), 135-144.
  9. [9] JORDAN, A.-NOWACKI, J. P. : Global Linearization of Non-Linear State Equations, International Journal Applied Electromagnetics and Mechanics 19 (2004), 637-642.10.3233/JAE-2004-642
  10. [10] NIJMEIJER, H.-van der SCHAFT, A. J. : Nonlinear Dynamical Control Systems, Springer-Verlag, New York, 1991.10.1007/978-1-4757-2101-0
  11. [11] ISIDORI, A. : Nonlinear Control Systems: An Introduction, Springer, Berlin, 1989.10.1007/978-3-662-02581-9
  12. [12] ISIDORI, A. : Nonlinear Control Systems, Springer, Berlin, 1995.10.1007/978-1-84628-615-5
  13. [13] BROCKETT, R. W. : Feedback Invariants for Nonlinear Systems, Proc. 6th IFACWorld Congr., vol. 6, Helsinki, 1978, pp. 1115-1120.10.1016/S1474-6670(17)66062-2
  14. [14] ISIDORI, A.-KRENER, A.-GORI, A. J.-MONACO, S. : Nonlinear Decoupling via Feedback: a Differential Geometric Approach, IEEE Trans. Automat. Contr. AC-26 No. 2 (1981), 331-345.10.1109/TAC.1981.1102604
  15. [15] TALL, I. A.-RESPONDEK, W. : Feedback Linearizable Strict Feedforward Systems, in Proceedings of the 47th IEEE Conference on Decision and Control, Canc´un, Mexico, 2008, pp. 2499-2504.10.1109/CDC.2008.4739418
  16. [16] DEVANATHAN, R. : Linearization Condition through State Feedback, IEEE Transactions on Automatic Control 46 No. 8 (2001), 1257-1260.10.1109/9.940929
  17. [17] BOUKAS, T. K.-HABETLER, T. G. : High-Performance Induction Motor Speed Control using Exact Feedback Linearization with State and State Derivative Feedback, IEEE Transactions on Power Electronics 19 No. 4 (2004), 1022-1028.10.1109/TPEL.2004.830042
  18. [18] DEUTSCHER, J.-SCHMID, C. : A State Space Embedding Approach to Approximate Feedback Linearization of Single In put Nonlinear Control Systems, International Journal of Circuit Theory and Applications 16 No. 9 (2006), 421-440.
  19. [19] LÓPEZ-ARAUJO, D. J.-ZAVALA-RO, A.-SANTIBÁÑEZ, V.-REYES, F. : Output-Feedback Adaptive Control for the Global Regulation of Robot Manipulators with Bounded Inputs, International Journal of Control, Automation, and Systems 11 No. 1 (Feb 2013), 105-115.10.1007/s12555-012-9203-4
  20. [20] JORDAN, A.-KACZOREK, T.-MYSZKOWSKI, P. : Linearization of Nonlinear Differential Equations, Published by Bialystok University of Technology, Bialystok, 2007. (in Polish)
  21. [21] JORDAN, A. J. : Linearization of Non-Linear State Equation, Bulletin of The Polish Academy of Sciences. Technical Sciences 54 No. 1 (2006), 63-73.
  22. [22] ELWAKIL, A.-KENNEDY, M. : Construction of Classes of Circuit-Independent Chaotic Oscillators using Passive-Only Nonlinear Devices, IEEE Transactions on Circuits and Systems-I 48 No. 3 (2001), 289-307.10.1109/81.915386
  23. [23] ZAWADZKI, A.-RÓŻOWICZ, , S. : Application of Input - State of the System Transformation for Linearization of some Nonlinear Generators, International Journal of Control, Automation, and Systems 13 No. 3 ( June 2015), (accepted for publication).10.1007/s12555-014-0026-3
  24. [24] ZAWADZKI, A. : Application of Local Coordinates Rectification in Linearization of Selected Parameters of Dynamic Nonlinear Systems, COMPEL - The International Journal for Computation and Mathematics in Electrical and Electronic Engineering 33 No. 5 (2014), 1819-1830.10.1108/COMPEL-11-2013-0358
  25. [25] BOURBAKI, N.: Lie Groups and Lie Algebras, (Chapters 1-3), Springer, Berlin 1998, Lie groups and Lie algebras (Chapters 4-6), Springer, Berlin, 2002.10.1007/978-3-540-89394-3
  26. [26] BUMP, D. : Lie Groups, Graduate Texts in Mathematics, vol. 225, Springer, New York, 2004.10.1007/978-1-4757-4094-3
  27. [27] SERRE, J. P.: Complex Semisimple Lie Algebras, Springer-Verlag, Berlin, 2001.10.1007/978-3-642-56884-8
  28. [28] YAT-SUN, P.-WAI-YIN, P.: Application of Elementary Differential Geometry to Influence Analysis, International Press of Boston Inc, Boston, 2012.
  29. [29] BODSON, M.-CHIASSONS, J. : Differential-Geometric Methods for Control of Electric Motors, International Journal of Circuit Theory and Applications 8 No. 11 (1998), 923-954.
  30. [30] De LUCA, A.: Decoupling and Feedback Linearization of Robots with Mixed Rigid/Elastic Joints, Int. J. Robust Nonlinear Control 8 No. 11 (1998), 965-977.10.1002/(SICI)1099-1239(199809)8:11<;965::AID-RNC371>3.0.CO;2-4
  31. [31] MURRAY WONHAM, W. : Linear Multivariable Control. A Geometric Approach, Springer-Verlag, New York, 1985.10.1007/978-1-4612-1082-5
DOI: https://doi.org/10.1515/jee-2016-0028 | Journal eISSN: 1339-309X | Journal ISSN: 1335-3632
Language: English
Page range: 199 - 205
Submitted on: Oct 10, 2015
|
Published on: Jun 28, 2016
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2016 Andrzej Zawadzki, Sebastian Różowicz, published by Slovak University of Technology in Bratislava
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.