[1] BURCHFIELD, T. R.-VENKATESAN, S. : Accelerometer- based Human Abnormal Movement Detection in Wireless Sensor Networks, Proceedings of ACM SIGMOBILE Workshop (2007), 67-69.10.1145/1248054.1248073
[2] HAYES, J.-BEIRNE, S.-LAU, K. T.-DIAMOND, D. : Evaluation of a Low Cost Wireless Chemical Sensor Network for Environmental Monitoring, IEEE Sensors Journal 64 No. 06 (2008), 530-533.
[5] GOSZTOLYA, G.-TÓTH, L. : Improving the Sound Recording Quality of Wireless Sensors Using Automatic Gain Control Methods, Scientific Bulletin of ”Politehnica” University of Timisoara, Transactions on Automatic Control and Computer Science 56 No. 2 (2011), 47-56.
[8] TÓTH, SZ. L.-SZTAHÓ, D.-VICSI, K. : Speech Emotion Perception by Human and Machine, Proceedings of COST Action (2012), 213-224.10.1007/978-3-540-70872-8_16
[9] GOSZTOLYA, G.-BUSA-FEKETE, R.-TÓTH, L. : Detecting Autism, Emotions and Social Signals Using AdaBoost, Proceedings of Interspeech (2013), 220-224.10.21437/Interspeech.2013-71
[10] MORGAN, M.-BOURLARD, H. : An Introduction to Hybrid HMM/Connectionist Continuous Speech Recognition, Signal Processing Magazine (May 1995), 1025-1028.
[12] VARGA, I.-OHTAKE, K.-TORISAWA, K.-DESAEGER, S.-MISU, T.-MATSUDA, S.-KAZAMA, J. : Similarity Based Language Model Construction for Voice Activated Open- Domain Question Answering, Proceedings of IJCNLP (2011), 535-544.
[14] HINTON, G. E.-OSINDERO, S.-TEH, Y.-W. : A Fast Learning Algorithm for Deep Belief Nets, Neural Computation 18 No. 7 (2006), 1527-1554.10.1162/neco.2006.18.7.152716764513
[15] SEIDE, F.-LI, G.-CHEN, X.-YU, D. : Feature Engineering in Context-Dependent Deep Neural Networks for Conversational Speech Transcription, Proceedings of ASRU (2011), 24-29.10.1109/ASRU.2011.6163899
[16] BENGIO, Y.-LAMBLIN, P.-POPOVICI, D.-LAROCHELLE, H. : Greedy Layer-Wise Training of Deep Networks, Advances in Neural Information Processing Systems 19 (2007), 153-160.
[18] GRÓSZ, T.-TÓTH, L. : A Comparison of Deep Neural Network Training Methods for Large Vocabulary Speech Recognition, Proceedings of TSD (2013), 36-43.10.1007/978-3-642-40585-3_6
[20] SELTZER, M.-YU, D.-WANG, Y. : An Investigation of Deep Neural Networks for Noise Robust Speech Recognition, Proceedings of ICASSP (2013), 7398-7402.10.1109/ICASSP.2013.6639100
[21] KOVÁCS, GY.-TÓTH, L. : Joint Optimization of Spectro- Temporal Features and Deep Neural Nets for Robust Automatic Speech Recognition, Acta Cybernetica 22 No. 1 (2015), 117-134.10.14232/actacyb.22.1.2015.8
[24] GAO, T.-DU, J.-DAI, L.-R.-LEE, C.-H. : Joint Training of Front-end and Back-end Deep Neural Networks for Robust Speech Recognition, Proceedings of ICASSP (2015), 4375-4379.10.1109/ICASSP.2015.7178797
[25] LIAO, H.-GALES, M. J. F. : Adaptive Training with Joint Uncertainty Decoding for Robust Recognition of Noisy Data, Proceedings of ICASSP (2007), 389-392.10.1109/ICASSP.2007.366931
[26] HUANG, Y.-SLANEY, M.-SELTZER, M. L.-GONG, Y. : Towards Better Performance with Heterogeneous Training Data in Acoustic Modeling Using Deep Neural Networks, Proceedings of Interspeech (2015), 845-849.10.21437/Interspeech.2014-214
[27] YOUNG, S.-EVERMANN, G.-GALES, M. J. F.-HAIN, T.-KERSHAW, D.-MOORE, G.-ODELL, J.-OLLASON, D.-POVEY, D.-VALTCHEV, V.-WOODLAND, P. C. : The HTK Book, Cambridge University Engineering Department, Cambridge, UK, 2006.
[29] TÓTH, L. : Phone Recognition with Hierarchical Convolutional Deep Maxout Networks, EURASIP Journal on Audio, Speech, and Music Processing 2015 No. 25 (2015), 1-13.
[30] GRÓSZ, T.-BUSA-FEKETE, R.-GOSZTOLYA, G.-TÓTH, L. : Assessing the Degree of Nativeness and Parkinson’s Condition Using Gaussian Processes and Deep Rectifier Neural Networks, Proceedings of Interspeech (2015), 1339-1343.10.21437/Interspeech.2015-195
[31] GOSZTOLYA, G.-GRÓSZ, T.-TÓTH, L.-IMSENG, D. : Building Context-Dependent DNN Acousitc Models Using Kullback- Leibler Divergence-Based State Tying, Proceedings of ICASSP (2015), 4570-4574.10.1109/ICASSP.2015.7178836