Have a personal or library account? Click to login
Domain Adaptation of Deep Neural Networks for Automatic Speech Recognition via Wireless Sensors Cover

Domain Adaptation of Deep Neural Networks for Automatic Speech Recognition via Wireless Sensors

Open Access
|May 2016

References

  1. [1] BURCHFIELD, T. R.-VENKATESAN, S. : Accelerometer- based Human Abnormal Movement Detection in Wireless Sensor Networks, Proceedings of ACM SIGMOBILE Workshop (2007), 67-69.10.1145/1248054.1248073
  2. [2] HAYES, J.-BEIRNE, S.-LAU, K. T.-DIAMOND, D. : Evaluation of a Low Cost Wireless Chemical Sensor Network for Environmental Monitoring, IEEE Sensors Journal 64 No. 06 (2008), 530-533.
  3. [3] GOGOLÁK, L.-PLETL, SZ.-KUKOLJ, D. : Neural Network- based Indoor Localization in WSN Environments, Acta Polytechnica Hungarica 10 No. 06 (2013), 221-235.
  4. [4] GOGOLÁK, L.-KUKOLJ, D.-FÜRSTNER, I. : Wireless Sensor Network Based Localization in Industrial Environments, Analecta 8 No. 1 (2014), 91-96.
  5. [5] GOSZTOLYA, G.-TÓTH, L. : Improving the Sound Recording Quality of Wireless Sensors Using Automatic Gain Control Methods, Scientific Bulletin of ”Politehnica” University of Timisoara, Transactions on Automatic Control and Computer Science 56 No. 2 (2011), 47-56.
  6. [6] RABINER, L.-JUANG, B. H. : Fundamentals of Speech Recognition, Prentice Hall, Upper Saddle River, NJ, USA, 1993.
  7. [7] FURUI, S. : Cepstral Analysis Technique for Automatic Speaker Verification, Acoustics, Speech and Signal 29 No. 2 (1981), 254-272.
  8. [8] TÓTH, SZ. L.-SZTAHÓ, D.-VICSI, K. : Speech Emotion Perception by Human and Machine, Proceedings of COST Action (2012), 213-224.10.1007/978-3-540-70872-8_16
  9. [9] GOSZTOLYA, G.-BUSA-FEKETE, R.-TÓTH, L. : Detecting Autism, Emotions and Social Signals Using AdaBoost, Proceedings of Interspeech (2013), 220-224.10.21437/Interspeech.2013-71
  10. [10] MORGAN, M.-BOURLARD, H. : An Introduction to Hybrid HMM/Connectionist Continuous Speech Recognition, Signal Processing Magazine (May 1995), 1025-1028.
  11. [11] NEDERHOF, M.-J. : Practical experiments with regular approximation of context-free languages, Journal of Computational Linguistics 26 No. 1 (2000), 17-44.10.1162/089120100561610
  12. [12] VARGA, I.-OHTAKE, K.-TORISAWA, K.-DESAEGER, S.-MISU, T.-MATSUDA, S.-KAZAMA, J. : Similarity Based Language Model Construction for Voice Activated Open- Domain Question Answering, Proceedings of IJCNLP (2011), 535-544.
  13. [13] DUDA, R. O.-HART, P. E. : Pattern Classification and Scene Analysis, John Wiley & Sons, New Jersey, 1973.
  14. [14] HINTON, G. E.-OSINDERO, S.-TEH, Y.-W. : A Fast Learning Algorithm for Deep Belief Nets, Neural Computation 18 No. 7 (2006), 1527-1554.10.1162/neco.2006.18.7.152716764513
  15. [15] SEIDE, F.-LI, G.-CHEN, X.-YU, D. : Feature Engineering in Context-Dependent Deep Neural Networks for Conversational Speech Transcription, Proceedings of ASRU (2011), 24-29.10.1109/ASRU.2011.6163899
  16. [16] BENGIO, Y.-LAMBLIN, P.-POPOVICI, D.-LAROCHELLE, H. : Greedy Layer-Wise Training of Deep Networks, Advances in Neural Information Processing Systems 19 (2007), 153-160.
  17. [17] GLOROT, X.-BORDES, A.-BENGIO, Y. : Deep Sparse Rectifier Networks, Proceedings of AISTATS (2011), 315-323.
  18. [18] GRÓSZ, T.-TÓTH, L. : A Comparison of Deep Neural Network Training Methods for Large Vocabulary Speech Recognition, Proceedings of TSD (2013), 36-43.10.1007/978-3-642-40585-3_6
  19. [19] TÓTH, L. : Phone Recognition with Deep Sparse Rectifier Neural Networks, Proceedings of ICASSP (2013), 6985-6989.10.1109/ICASSP.2013.6639016
  20. [20] SELTZER, M.-YU, D.-WANG, Y. : An Investigation of Deep Neural Networks for Noise Robust Speech Recognition, Proceedings of ICASSP (2013), 7398-7402.10.1109/ICASSP.2013.6639100
  21. [21] KOVÁCS, GY.-TÓTH, L. : Joint Optimization of Spectro- Temporal Features and Deep Neural Nets for Robust Automatic Speech Recognition, Acta Cybernetica 22 No. 1 (2015), 117-134.10.14232/actacyb.22.1.2015.8
  22. [22] JAIN, P.-HERMANSKY, H.-KINGSBURY, B. : Distributed Speech Recognition Using Noise-Robust MFCC and TRAPSestimated Manner Features, Proceedings of Interspeech (2002), 473-476.10.21437/ICSLP.2002-22
  23. [23] AGARWAL, A.-CHENG, Y. M. : Two-Stage Mel-Warped Wiener Filter For Robust Speech Recognition, Proceedings of ASRU (1999), 12-15.
  24. [24] GAO, T.-DU, J.-DAI, L.-R.-LEE, C.-H. : Joint Training of Front-end and Back-end Deep Neural Networks for Robust Speech Recognition, Proceedings of ICASSP (2015), 4375-4379.10.1109/ICASSP.2015.7178797
  25. [25] LIAO, H.-GALES, M. J. F. : Adaptive Training with Joint Uncertainty Decoding for Robust Recognition of Noisy Data, Proceedings of ICASSP (2007), 389-392.10.1109/ICASSP.2007.366931
  26. [26] HUANG, Y.-SLANEY, M.-SELTZER, M. L.-GONG, Y. : Towards Better Performance with Heterogeneous Training Data in Acoustic Modeling Using Deep Neural Networks, Proceedings of Interspeech (2015), 845-849.10.21437/Interspeech.2014-214
  27. [27] YOUNG, S.-EVERMANN, G.-GALES, M. J. F.-HAIN, T.-KERSHAW, D.-MOORE, G.-ODELL, J.-OLLASON, D.-POVEY, D.-VALTCHEV, V.-WOODLAND, P. C. : The HTK Book, Cambridge University Engineering Department, Cambridge, UK, 2006.
  28. [28] ABARI, K.-OLASZY, G.-ZAINKÓ, CS.-KISS, G. : Hungarian Pronunciation Dictionary on Internet (in Hungarian), Proceedings of MSZNY (2006), 223-230.
  29. [29] TÓTH, L. : Phone Recognition with Hierarchical Convolutional Deep Maxout Networks, EURASIP Journal on Audio, Speech, and Music Processing 2015 No. 25 (2015), 1-13.
  30. [30] GRÓSZ, T.-BUSA-FEKETE, R.-GOSZTOLYA, G.-TÓTH, L. : Assessing the Degree of Nativeness and Parkinson’s Condition Using Gaussian Processes and Deep Rectifier Neural Networks, Proceedings of Interspeech (2015), 1339-1343.10.21437/Interspeech.2015-195
  31. [31] GOSZTOLYA, G.-GRÓSZ, T.-TÓTH, L.-IMSENG, D. : Building Context-Dependent DNN Acousitc Models Using Kullback- Leibler Divergence-Based State Tying, Proceedings of ICASSP (2015), 4570-4574.10.1109/ICASSP.2015.7178836
DOI: https://doi.org/10.1515/jee-2016-0017 | Journal eISSN: 1339-309X | Journal ISSN: 1335-3632
Language: English
Page range: 124 - 130
Submitted on: Nov 20, 2015
Published on: May 14, 2016
Published by: Slovak University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 6 times per year

© 2016 Gábor Gosztolya, Tamás Grósz, published by Slovak University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.