Have a personal or library account? Click to login
Bankruptcy Practice in Countries of Visegrad Four Cover

Bankruptcy Practice in Countries of Visegrad Four

Open Access
|Jun 2017

References

  1. Achim, M.V., Mare, C., & Borlea, S.N. (2012). A statistical model of financial risk bankruptcy applied for Romanian manufacturing industry. International Conference on Emerging Markets Queries in Finance and Business, Conference Proceedings, 132-137.10.1016/S2212-5671(12)00131-1
  2. Adamko, P., & Svabova, L. (2016). Prediction of the risk of bankruptcy of Slovak companies. Proceedings of 8th International Scientific Conference Managing and Modelling of Financial Risks, Conference proceedings, 15-20.
  3. Agrawal, K., & Maheshwari, Y. (2016). Predicting financial distress: revisiting the option-based model. South Asian Journal of Global Business Research, 5(2), 268-28410.1108/SAJGBR-04-2015-0030
  4. Alaminos, D., delCastillo, A., & Fernandez, M.A. (2016). A Global Model for Bankruptcy Prediction. Plus One, 11(11), e0166693.10.1371/journal.pone.0166693
  5. Altman, E. I. (1968). Financial Ratios, Discriminant Analysis and The Prediction of Corporate Bankruptcy. The Journal of Finance, 23(4), 589-609.10.1111/j.1540-6261.1968.tb00843.x
  6. Altman, E. I., Iwanicz-Drozdowska, M., Laitinen, E.K., & Suvas, A. (2014). Distressed Firm and Bankruptcy Prediction in an International Context: A Review and Empirical Analysis of Altman's Z-Score Model. 1-47. [Accessed 10.04.2017]. Available from Internet: https://poseidon01.ssrn.com/delivery.php?ID=529106093087075013127067084001013126029069029053059024023104086010119071109096111023033010062037057098105109087086121108006005005049053081003084104122116117114069001049002007025124115086117073017084097088069083065010109072000001074086091124086118014066&EXT=pdf10.2139/ssrn.2536340
  7. Amendola, A, Restaino, M., & Sensini, L. (2013). Corporate Financial Distress And Bankruptcy: A Comparative Analysis. In The 6th Annual Euromed Conference Of The Euromed-Academy-Of-Business. Conference proceedings, 107-120.
  8. Barreda, A.A., Kageyama, Y., Singh, D., & Zubieta, S. (2017). Hospitality Bankruptcy in United States of America: A Multiple Discriminant Analysis-Logit Model Comparison. Journal of Quality Assurance in Hospitality & Tourism, 18(1), 86-106.10.1080/1528008X.2016.1169471
  9. Beaver, W. (1966). Financial Ratios as Predictors of Failure, Empirical Research in Accounting: Selected Studies. Supplement to the Journal of Accounting Research, (4), 71-111.10.2307/2490171
  10. Binkert, Ch. H. (1999) Fruherkennung von Unternehmenskrisen mit Hilfe geeigneter Methoden im deutschen und slowakischen Wirtschaftsraum. Dissertation.
  11. Chrastinova, Z. (1998). Metódy hodnotenia ekonomickej bonity a predikcie finančnej situácie poľnohospodárskych podnikov. Bratislava: VÚEPP.
  12. Davydenko, S., & Franks, Jr. (2008) Do Bankruptcy Codes Matter? A Study of Defaults in France, Germany, and the UK. Journal of Finance, 63(2), 797-1022.
  13. Dichev, I.D. (1998). Is The Risk Of Bankruptcy A Systematic Risk? Journal of Finance, 53(3), 1131-1147.10.1111/0022-1082.00046
  14. Edmister, R.O. (1972). Financial Ratios as Discriminant Predictors of Small Business Failure. Journal of Finance, 27(1), 1-178.
  15. Fitzpatrick, P.J. (1932). A Comparison of Ratios of Successful Industrial Enterprises with Those of Failed Firms, Certified Public Accountant, (10), 598-605.
  16. Gajdka J., & Stos, D. (1996). Wykorzystanie analizy dyskryminacyjnej w ocenie kondycji finansowej przedsiębiorstw, Materiały z Ogólnopolskiej Konferencji Naukowej „Restrukturyzacja w procesie przekształceń i rozwoju przedsiębiorstw”, Wydawnictwo Akademii Ekonomicznej w Krakowie, Wydawnictwo Akademii Ekonomicznej, Kraków, Conference proceedings, 56-65.
  17. Georgescu, V. (2017). Using genetic algorithms to evolve type-2 fuzzy logic systems for predicting bankruptcy. Kybernetes, 46(1), 142-156.10.1108/K-06-2016-0152
  18. Gruszczynski, M. (2004) Financial distress of companies in Poland. International Advances in Economic Research, 10(4), 249-256.10.1007/BF02295137
  19. Gurcik, L. (2002). G-index - the financial situation prognosis method of agricultural enterprises. Agricultural Economics, 48(8), 373-378.
  20. Hamrol, M., Czajka, B., & Piechocki, M. (2004). Company bankruptcy - a discriminant analysis model - Upadłość przedsiębiorstwa - model analizy dyskryminacyjnej. Przegląd Organizacji, (6), 35-39.10.33141/po.2004.06.09
  21. Hurtosova, J. (2009). Konštrukcia ratingového modelu, nástroja hodnotenia úverovej spôsobilosti podniku, dissertation thesis, Economic University in Bratislava, Bratislava.
  22. Jones, S., Johnstone, D., & Wilson, R. (2017). Predicting Corporate Bankruptcy: An Evaluation of Alternative Statistical Frameworks. Journal of Business & Accounting, 44(1-12), 3-34.10.1111/jbfa.12218
  23. Kasgari, A.A., Divsalar, M., Javid, M.R., & Ebrahimian, S.J. (2013). Prediction of bankruptcy Iranian corporations through artificial neural network and Probit-based analyses. Neural Computing & Applications, 23(3-4), 927-936.10.1007/s00521-012-1017-z
  24. Kirkos, E. (2015). Assessing Methodologies for Intelligent Bankruptcy Prediction. Artificial Intelligence Review, 43(1), 83-123.10.1007/s10462-012-9367-6
  25. Kliestik, T., & Majerova, J. (2015). Selected issues of selection of significant variables in the prediction models. Proceedings of 10th international scientific conference Financial management of firms and financial institutions, Conference proceedings, 537-543.
  26. Kumar, P., & Ravi, V. (2007). Bankruptcy Prediction In Banks And Firms Via Statistical And Intelligent Techniques - A Review, European Journal Of Operational Research, 180(1), 1-28.10.1016/j.ejor.2006.08.043
  27. Mączynska, E., (2004). Globalizacja ryzyka a systemy wczesnego ostrzegania przed upadłością przedsiębiorstwa. Upadłość przedsiębiorstw w Polsce w latach 1990-2003. Teoria i praktyka. Poznań.
  28. Michaluk, K. (200). Zastosowania metod ilosciowych w procesie przewidywania zagrozenia upadloscia przedsiebiorstwa. doctoral dissertation, Uniwersytet Szczeciński, Szszecin.
  29. Mousavi, M.M., Ouenniche, J., & Xu, B. (2015). Performance evaluation of bankruptcy prediction models: An orientation-free super-efficiency DEA-based framework. International Review of Financial Analysis, (42), 64-75.10.1016/j.irfa.2015.01.006
  30. Neumaier, I., & Neumaierová, I. (1995). Zkuste spočítat svůj INDEX IN 95. Terno, (5).
  31. Neumaier, I., & Neumaierová, I. (1999). Finanční analýza INFA - Aplikace na energetiku. Sektorové a odvětvové analýzy Aspekt Energetika, 4(1), 32-75.
  32. Neumaier, I., & Neumaierová, I. (2001). Analýza tvorby hodnoty - aplikace finanční analýzy INFA. Sektorové a odvětvové analýzy Aspekt 8/V Investiční strojírenství, 23-39.
  33. Neumaier, I., & Neumaierová, I. (2005). Index IN 05. Proceeding of the conference „European financial systems”, Conference proceedings, 143-148.
  34. Ohlson, J.A. (1980) Financial ratios and the probabilistic prediction of bankruptcy. Journal of Accounting Research, 18(1), 109-131.10.2307/2490395
  35. Onofrei, M., & Lupu, D. (2014). The Modeling of Forecasting the Bankruptcy Risk in Romania. Economic Computation and Economic Cybernetics Studies and Research, 48(3), 197-215.
  36. Premachandra, I.M., Chen, Y., & Watson, J. (2011). DEA as a tool for predicting corporate failure and success: A case of bankruptcy assessment. Omega - International Journal of Management Science, 39(6), 620-626.10.1016/j.omega.2011.01.002
  37. Prusak, B. (2004). How to recognise a potential bankrupt? Assessment of company insolvency risk, based on multiple discriminant analysis. [Accessed 10.04.2017]. Available from Internet: http://www1.zie.pg.gda.pl/~pb/jrpb.pdf
  38. Springate, G.L.V. (1978). Predicting the possibility of failure in a Canadian firm. Unpublished MBA Res. project, Simon Fraser Univ., 42-47.
  39. Svabova, L., & Durica, M. (2016). Korelačná analýza prediktorov použitých v bankrotných predikčných modeloch na Slovensku. Ekonomicko manazerske spektrum, 10(1), 2-11.
  40. Svabova, L., & Kral, P. (2016). Selection of predictors in bankruptcy prediction models for Slovak companies. Proceedings of 10th International days of statistics and economics, Conference proceedings, 1759-1768.
  41. Taffler, R.J., & Tseung, M. (1984). The Audit Going-Concern. Practise. Accountant´s Magazine, (88), 263-269.
  42. Tsai, C.F., Hsu, Y.F., & Yen, D.C. (2014). A comparative study of classifier ensembles for bankruptcy prediction. Applied Soft Computing, (24), 977-984.10.1016/j.asoc.2014.08.047
  43. Virag, M., & Hajdu, O. (1996) Pénzügyi mutatószámokon alapuló csõdmodellszámítások. Bankszemle XV, (5), 42-53.
  44. Virag, M., & Nyitrai, T. (2014). Is There A Trade-Off Between The Predictive Power And The Interpretability Of Bankruptcy Models? The Case Of The First Hungarian Bankruptcy Prediction Model. Acta Oeconomica, 64(4), 419-440.10.1556/aoecon.64.2014.4.2
  45. Wierzba, D. (2000). Wczesne wykrywanie przedsiębiorstw zagrożonych upadłością na podstawie analizy wskaźników fi nansowych - teoria i badania empiryczn e. „Zeszyty Naukowe” 9, Wyd. Wyższej Szkoły Ekonomiczno-Informacyjnej w Warszawie, Warszawa.
  46. Wrzosek, M., & Ziemba, A. (2009). Construction of a rating based on a bankruptcy prediction model. Credit Research Center, The University of Edinburgh, 1-19, [Accessed 08.04.2017]. Available from Internet: http://www.business-school.ed.ac.uk/crc/conferences/conference-archive?a=45910
  47. Zalai, K. (2000). Special Aspects of Forecasting the financial development of Slovak companies. BIATEC, 8(1), 12- 14.
  48. Zhao, D., Huang, C.Y., Wei, Y., Yu, F.H., Wang, M.J., & Chen, H.L. (2017). An Effective Computational Model for Bankruptcy Prediction Using Kernel Extreme Learning Machine Approach. Computational Economics, 49(2), 325-341.10.1007/s10614-016-9562-7
  49. Zieba, M., Tomczak, S.K., & Tomczak, J.M. (2016). Ensemble boosted trees with synthetic features generation in application to bankruptcy prediction. Expert Systems with Applications, (58), 93-101.10.1016/j.eswa.2016.04.001
  50. Zmijewski, M. E. (1984) Methodological issues related to the estimation of financial distress prediction models. Journal of Accounting Research, (22), 59-82.10.2307/2490859
Language: English
Page range: 108 - 118
Published on: Jun 27, 2017
Published by: University College of Economics and Culture
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2017 Maria Misankova, Katarina Zvarikova, Jana Kliestikova, published by University College of Economics and Culture
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.