Have a personal or library account? Click to login
A Framework for the Assessment of Research and Its Impacts Cover

A Framework for the Assessment of Research and Its Impacts

Open Access
|Dec 2017

References

  1. Abramovitz, M. (1956). Resource and output trends in the United States since 1870. The American Economic Review, 46(2), 5–23.
  2. Acemoglu, D., Aghion, P., &amp; Zilibotti, F. (2003). Vertical integration and distance to frontier. Journal of the European Economic Association, 1(2–3), 630–638.<pub-id pub-id-type="doi"><a href="https://doi.org/10.1162/154247603322391260" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1162/154247603322391260</a></pub-id>
  3. Acemoglu, D., Aghion, P., &amp; Zilibotti, F. (2006). Distance to frontier, selection, and economic growth. Journal of the European Economic Association, 4(1), 37–74.<pub-id pub-id-type="doi"><a href="https://doi.org/10.1162/jeea.2006.4.1.37" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1162/jeea.2006.4.1.37</a></pub-id>
  4. Adams, J.D. (1990). Fundamental stocks of knowledge and productivity growth. Journal of Political Economy, 98(4), 673–702.<pub-id pub-id-type="doi"><a href="https://doi.org/10.1086/261702" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1086/261702</a></pub-id>
  5. Agarwal, R., &amp; Dhar, V. (2014). Editorial big data, data science, and analytics: The opportunity and challenge for IS research. Information Systems Research, 25(3), 443–448.<pub-id pub-id-type="doi"><a href="https://doi.org/10.1287/isre.2014.0546" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1287/isre.2014.0546</a></pub-id>
  6. Aghion, P. (2009). Growth and education. Commission on growth and development working paper, no. 56. Washington, DC: World Bank Publications.
  7. Aghion, P., &amp; Howitt, P. (2009). The economics of growth. Cambridge, MA: The MIT Press.
  8. Aghion, P., David, P.A., &amp; Foray, D. (2009). Science, technology and innovation for economic growth: Linking policy research and practice in ‘STIG Systems’. Research Policy, 38(4), 681–693.<pub-id pub-id-type="doi"><a href="https://doi.org/10.1016/j.respol.2009.01.016" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.respol.2009.01.016</a></pub-id>
  9. Anderson C. (2008). The end of theory: The data deluge makes the scientific method obsolete. Wired Magazine. Retrieved on July 30, 2017, from <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://www.wired.com/2008/06/pb-theory/">https://www.wired.com/2008/06/pb-theory/</ext-link>.
  10. Antonelli, C., &amp; Link, A.N. (2014). Routledge handbook of the economics of knowledge. London: Routledge.
  11. Audretsch, D.B., Bozeman, B., Combs, K.L., Feldman, M., Link, A.N., Siegel, D.S., ... &amp; Wessner, C. (2002). The economics of science and technology. The Journal of Technology Transfer, 27(2), 155–203.<pub-id pub-id-type="doi"><a href="https://doi.org/10.1023/A:1014382532639" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1023/A:1014382532639</a></pub-id>
  12. Bădin, L., Daraio, C., &amp; Simar, L. (2012). How to measure the impact of environmental factors in a nonparametric production model. European Journal of Operational Research, 223(3), 818–833.<pub-id pub-id-type="doi"><a href="https://doi.org/10.1016/j.ejor.2012.06.028" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.ejor.2012.06.028</a></pub-id>
  13. Bădin, L., Daraio, C., &amp; Simar, L. (2014). Explaining inefficiency in nonparametric production models: The state of the art. Annals of Operations Research, 214(1), 5–30.<pub-id pub-id-type="doi"><a href="https://doi.org/10.1007/s10479-012-1173-7" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s10479-012-1173-7</a></pub-id>
  14. Ballard, B.W. (2000). Understanding MacIntyre. Lanham, MD: University Press of America.
  15. Bammer, G. (2016). What constitutes appropriate peer review for interdisciplinary research? Palgrave Communications, 2 (palcomms201617). Retrieved on July 30, 2017, from <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="http://www.nature.com/articles/palcomms201617">http://www.nature.com/articles/palcomms201617</ext-link>.
  16. Barré, R. (2004). S&amp;T indicators for policy making in a changing science–society relationship. In H. Moed, W. Glänzel, &amp; U. Schmoch (Eds.), Handbook of Quantitative Science and Technology Research (pp. 115–132). Dordrecht: Springer Netherlands.
  17. Batini, C., &amp; Scannapieco, M. (2016). Data and information quality. Cham, Switzerland: Springer International Publishing.
  18. Benessia, A., Funtowicz, S., Giampietro, M., Pereira, Â.G., Ravetz, J., Saltelli, A., ... &amp; van der Sluijs, J.P. (2016). Science on the verge. Tempe, AZ: Consortium for Science, Policy, &amp; Outcomes at Arizona State University.
  19. Blaug, M. (1966). Economics of education; a selected annotated bibliography (No. 370.193 B5). Retrieved on July 30, 2017, from <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="http://www.sciencedirect.com/science/article/pii/B9780080206271500025">http://www.sciencedirect.com/science/article/pii/B9780080206271500025</ext-link>.
  20. Bogetoft, P., Fried, H.O., &amp; Eeckaut, P.V. (2007). The university benchmarker: An interactive computer approach. In A. Bonaccorsi, &amp; C. Daraio (Eds.), Universities and Strategic Knowledge Creation: Specialization and Performance in Europe (pp. 443–462). Cheltenham: Edward Elgar Publishing.
  21. Bonaccorsi, A., &amp; Daraio, C. (2004). Econometric approaches to the analysis of productivity of RD systems. Production functions and production frontiers. In H.F. Moed, W. Glänzel, &amp; U. Schmoch (Eds.), Handbook of Quantitative Science and Technology Research (pp. 51–74). Dordrecht: Springer Netherlands.
  22. Borgman, C.L. (2015). Big data, little data, no data: Scholarship in the networked world. Cambridge, MA: The MIT Press.
  23. Bornmann, L. (2013). What is societal impact of research and how can it be assessed? A literature survey. Journal of the American Society for Information Science and Technology, 64(2), 217–233.<pub-id pub-id-type="doi"><a href="https://doi.org/10.1002/asi.22803" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1002/asi.22803</a></pub-id>
  24. Borrás, S., &amp; Edquist, C. (2013). The choice of innovation policy instruments. Technological Forecasting and Social Change, 80(8), 1513–1522.<pub-id pub-id-type="doi"><a href="https://doi.org/10.1016/j.techfore.2013.03.002" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.techfore.2013.03.002</a></pub-id>
  25. Bozeman, B., &amp; Melkers, J. (Eds). (1993). Evaluating R&amp;D impacts: Methods and practice. New York: Springer.
  26. Brunsson, N., &amp; Jacobsson, B. (Eds.). (2002a). A world of standards. Oxford: Oxford University Press.
  27. Brunsson, N., &amp; Jacobsson, B. (2002b). The pros and cons of standardization—An epilogue. In A World of Standards (pp. 169–173). Oxford: Oxford University Press.
  28. Capano, G., Howlett, M., &amp; Ramesh, M. (Eds.). (2015). Varieties of governance. Hampshire, UK: Palgrave Macmillan.
  29. Carayannis, E.G., &amp; Campbell, D.F. (2009). ‘Mode 3’ and ‘Quadruple Helix’: Toward a 21<sup>st</sup>century fractal innovation ecosystem. International Journal of Technology Management, 46(3–4), 201–234.<pub-id pub-id-type="doi"><a href="https://doi.org/10.1504/IJTM.2009.023374" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1504/IJTM.2009.023374</a></pub-id>
  30. Checchi, D. (2006). The economics of education: Human capital, family background and inequality. Cambridge: Cambridge University Press.
  31. Chen, C.M., Delmas, M.A., &amp; Lieberman, M.B. (2015). Production frontier methodologies and efficiency as a performance measure in strategic management research. Strategic Management Journal, 36(1), 19–36.<pub-id pub-id-type="doi"><a href="https://doi.org/10.1002/smj.2199" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1002/smj.2199</a></pub-id>
  32. Chesbrough, H. (2012). Open innovation: Where we’ve been and where we’re going. Research-Technology Management, 55(4), 20–27.
  33. Cohen, W.M., &amp; Levinthal, D.A. (1990). Absorptive capacity: A new perspective on learning and innovation. Administrative Science Quarterly, 35(1), 128–152.<pub-id pub-id-type="doi"><a href="https://doi.org/10.2307/2393553" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2307/2393553</a></pub-id>
  34. Creswell, J.W., &amp; Clark, V.L.P. (Eds.). (2011). 2<sup>nd</sup> Ed. Designing and conducting mixed methods research. Thousand Oaks, CA: SAGE Publications.
  35. Cronin, B. (2013). Thinking about data. Journal of the American Society for Information Science and Technology, 64(3), 435–436.<pub-id pub-id-type="doi"><a href="https://doi.org/10.1002/asi.22928" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1002/asi.22928</a></pub-id>
  36. Cronin, B., &amp; Sugimoto, C.R. (Eds.). (2014). Beyond bibliometrics: Harnessing multidimensional indicators of scholarly impact. Cambridge, MA: The MIT Press.
  37. Cronin, B., &amp; Sugimoto, C.R. (Eds.). (2015). Scholarly metrics under the microscope: From citation analysis to academic auditing. Medford, NJ: Information Today.
  38. D’Ariano, G.M., &amp; Perinotti, P. (2016). Quantum theory is an information theory. Foundations of Physics, 46(3), 269–281.<pub-id pub-id-type="doi"><a href="https://doi.org/10.1007/s10701-015-9935-0" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s10701-015-9935-0</a></pub-id>
  39. Dahler-Larsen, P. (2012). The evaluation society. California: Stanford University Press.
  40. Daraio, C. (2015). Assessing the efficiency, effectiveness and impact of education in the age of big data: Challenges and a way forward. Keynote presentation at Leuven LEER Workshop ‘Efficiency in Education and the Use of Big Data’, November 19–20, 2015, Leuven (Belgium).
  41. Daraio, C. (2017a). Assessing research and its impacts: The generalized implementation problem and a doubly-conditional performance evaluation model, paper presented at the ISSI 2017 Conference, October 2017, Wuhan (China).
  42. Daraio, C. (2017b). A doubly conditional performance evaluation model, the democratization of evaluation and altmetrics, paper presented at the STI 2017 Conference, September 2017, Paris.
  43. Daraio, C. (in press). Econometric approaches to the measurement of research productivity. In W. Glänzel, H.F. Moed, H. Schmoch, &amp; M. Thelwall (Eds.), Springer Handbook of Science and Technology Indicators.
  44. Daraio, C., &amp; Simar, L. (2014). Directional distances and their robust versions: Computational and testing issues. European Journal of Operational Research, 237(1), 358–369.<pub-id pub-id-type="doi"><a href="https://doi.org/10.1016/j.ejor.2014.01.064" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.ejor.2014.01.064</a></pub-id>
  45. Daraio, C., &amp; Simar, L. (2007). Advanced robust and nonparametric methods in efficiency analysis. Methodology and applications. New York: Springer.
  46. Daraio, C., Simar, L., &amp; Wilson, P.W. (2017). Central limit theorems for conditional efficiency measures and tests of the “separability” condition in nonparametric two-stage models of production. The Econometrics Journal. Retrieved on July 30, 2017, from <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1111/ectj.12103" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1111/ectj.12103</a>">https://doi.org/10.1111/ectj.12103</ext-link>.
  47. Daraio, C., &amp; Glänzel, W. (2016). Grand challenges in data integration—state of the art and future perspectives: An introduction. Scientometrics, 108 (1), 391–400.<pub-id pub-id-type="doi"><a href="https://doi.org/10.1007/s11192-016-1914-5" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s11192-016-1914-5</a></pub-id>
  48. Daraio, C., Lenzerini, M., Leporelli, C., Moed, H.F., Naggar, P., Bonaccorsi, A., &amp; Bartolucci, A. (2016a). Data integration for research and innovation policy: An ontology-based data management approach. Scientometrics, 106(2), 857–871.<pub-id pub-id-type="doi"><a href="https://doi.org/10.1007/s11192-015-1814-0" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s11192-015-1814-0</a></pub-id>
  49. Daraio, C., Lenzerini, M., Leporelli, C., Naggar, P., Bonaccorsi, A., &amp; Bartolucci, A. (2016b). The advantages of an Ontology-Based Data Management approach: Openness, interoperability and data quality. Scientometrics, 108 (1), 441–455.<pub-id pub-id-type="doi"><a href="https://doi.org/10.1007/s11192-016-1913-6" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s11192-016-1913-6</a></pub-id>
  50. Debackere, K. (2016). Let the data speak for themselves: Opportunities and caveats. Journal of Data and Information Science, 1(1), 3–5.
  51. DeMillo, R.A., &amp; Young, A.J. (2015). Revolution in higher education: How a small band of innovators will make college accessible and affordable. Cambridge, MA: The MIT Press.
  52. Ding, Y., Rousseau, R., &amp; Wolfram, D. (Eds). (2014). Measuring scholarly impact. Cham, Switzerland: Springer International Publishing.
  53. Ding, Y., &amp; Stirling, K. (2016). Data-driven discovery: A new era of exploiting the literature and data. Journal of Data and Information Science, 1(4), 1–9.<pub-id pub-id-type="doi"><a href="https://doi.org/10.20309/jdis.201622" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.20309/jdis.201622</a></pub-id>
  54. Drucker, P.F. (1967). The effective executive. New York: Harper and Row.
  55. Ebrahim, A., &amp; Rangan, V.K. (2014). What impact? California Management Review, 56(3), 118–141.
  56. Edquist, C. (2001). The systems of innovation approach and innovation policy: An account of the state of the art. In Druid Nelson and Winter Conference 2001 (pp. 12–15). Denmark: Aalborg University.
  57. Edwards, P.N., Jackson, S.J., Chalmers, M.K., Bowker, G.C., Borgman, C.L., Ribes, D., … &amp; Calvert, S. (2013). Knowledge infrastructures: Intellectual frameworks and research challenges (p. 40). Ann Arbor, MI: University of Michigan. Retrieved on July 30, 2017, from <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="http://deepblue.lib.umich.edu/handle/2027.42/97552">http://deepblue.lib.umich.edu/handle/2027.42/97552</ext-link>.
  58. Egghe, L., &amp; Rousseau, R. (1990). Introduction to informetrics: Quantitative methods in library, documentation and information science. Amsterdam: Elsevier.
  59. Egghe, L. (2005). Power laws in the information production process: Lotkaian informetrics. Amsterdam: Elsevier.
  60. Ekbia, H., Mattioli, M., Kouper, I., Arave, G., Ghazinejad, A., Bowman, T., … &amp; Sugimoto, C.R. (2015). Big data, bigger dilemmas: A critical review. Journal of the Association for Information Science and Technology, 66(8), 1523–1545<pub-id pub-id-type="doi"><a href="https://doi.org/10.1002/asi.23294" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1002/asi.23294</a></pub-id>
  61. Etzkowitz, H., &amp; Leydesdorff, L. (2000). The dynamics of innovation: From national systems and mode 2 to a triple helix of university-industry-government relations. Research Policy, 29(2), 109–123.<pub-id pub-id-type="doi"><a href="https://doi.org/10.1016/S0048-7333(99)00055-4" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/S0048-7333(99)00055-4</a></pub-id>
  62. European Commission (2014). Expert Group to support the development of tailor-made impact assessment methodologies for ERA (European Research Area), Brussels, Belgium.
  63. Fagerberg, J., Martin, B.R., &amp; Andersen, E.S. (Eds.). (2013). Innovation studies: Evolution and future challenges. Oxford: Oxford University Press.
  64. Fealing, K.H., Lane, J.I., Marburger, J.H. JIII, &amp; Shipp, S.S. (Eds.) (2011). The science of science policy, a handbook. Stanford: Stanford University Press.
  65. Floridi, L. (Ed.). (2008). The Blackwell guide to the philosophy of computing and information. Hoboken, NJ: John Wiley &amp; Sons.
  66. Floridi, L. (Ed.). (2010). The Cambridge handbook of information and computer ethics. Cambridge: Cambridge University Press.
  67. Floridi, L. (2012). The road to the philosophy of information. In H. Demir (Eds.), Luciano Floridi’s Philosophy of Technology (pp. 245–271). Dordrecht: Springer Netherlands.
  68. Floridi, L. (2014). The fourth revolution: How the infosphere is reshaping human reality. Oxford: Oxford University Press.
  69. Floridi, L., &amp; Illari, P. (Eds.). (2014). The philosophy of information quality (Vol. 358). Cham, Switzerland: Springer International Publishing.
  70. Frické, M. (2015). Big data and its epistemology. Journal of the Association for Information Science and Technology, 66 (4), 651–661.<pub-id pub-id-type="doi"><a href="https://doi.org/10.1002/asi.23212" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1002/asi.23212</a></pub-id>
  71. Frischmann, B.M. (2012). Infrastructure: The social value of shared resources. Oxford: Oxford University Press.
  72. Funtowicz, S.O., &amp; Ravetz, J.R. (1990). Science for policy: Uncertainty and quality. In Uncertainty and Quality in Science for Policy (pp. 7–16). Dordrecht: Springer Netherlands.
  73. Furner, J. (2014). The ethics of evaluative bibliometrics. In B. Cronin, &amp; C. Sugimoto (Eds.), Beyond Bibliometrics: Harnessing Multidimensional Indicators of Scholarly Impact (pp. 85–107). Cambridge, MA: MIT Press.
  74. Galán, J.E., Veiga, H., &amp; Wiper, M.P. (2014). Bayesian estimation of inefficiency heterogeneity in stochastic frontier models. Journal of Productivity Analysis, 42(1), 85–101.<pub-id pub-id-type="doi"><a href="https://doi.org/10.1007/s11123-013-0377-4" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s11123-013-0377-4</a></pub-id>
  75. Georgescu-Roegen, N. (1971). The entropy law and the economic process. Cambridge, MA: Harvard University Press.
  76. Gibbons, M., Limoges, C., Nowotny, H., Schwartzman, S., Scott, P., &amp; Trow, M. (1994). The new production of knowledge: The dynamics of science and research in contemporary societies. London: Sage.
  77. Gingras, Y. (2016). Bibliometrics and research evaluation: Uses and abuses. Cambridge, MA: The MIT Press.
  78. Glänzel, W. (1996). The need for standards in bibliometric research and technology. Scientometrics, 35(2), 167–176.<pub-id pub-id-type="doi"><a href="https://doi.org/10.1007/BF02018475" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/BF02018475</a></pub-id>
  79. Glänzel, W., &amp; Schoepflin, U. (1994). Little scientometrics, big scientometrics… and beyond? Scientometrics, 30(2–3), 375–384.<pub-id pub-id-type="doi"><a href="https://doi.org/10.1007/BF02018107" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/BF02018107</a></pub-id>
  80. Glänzel, W. (2010). On reliability and robustness of scientometrics indicators based on stochastic models. An evidence-based opinion paper. Journal of Informetrics, 4(3), 313–319.
  81. Glänzel, W., &amp; Moed, H.F. (2013). Opinion paper: Thoughts and facts on bibliometric indicators. Scientometrics, 96(1), 381–394.<pub-id pub-id-type="doi"><a href="https://doi.org/10.1007/s11192-012-0898-z" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s11192-012-0898-z</a></pub-id>
  82. Glänzel, W., Moed, H.F., Schmoch, H., &amp; Thelwall, M. (Eds). (in press). Springer Handbook of Science and Technology Indicators.
  83. Godin, B. (2002). Outline for a history of science measurement. Science, Technology, &amp; Human Values, 27(1), 3–27.<pub-id pub-id-type="doi"><a href="https://doi.org/10.1177/016224390202700101" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1177/016224390202700101</a></pub-id>
  84. Godin, B. (2004). Measurement and statistics on science and technology: 1920 to the present. London: Routledge.
  85. Griliches, Z. (1986). Economic data issues. In Z. Griliches, &amp; M.D. Intriligator (Eds.), Handbook of Econometrics Volume III (pp. 1465–1514). Amsterdam: Elsevier.
  86. Griliches, Z. (1994). Productivity, R&amp;D, and the data constraint. American Economic Review, 84(1), 1–23.
  87. Griliches, Z. (1998). R&amp;D and productivity: The econometric evidence. Chicago: University of Chicago Press.
  88. Hall, B.H., &amp; Rosenberg, N. (Eds.). (2010). Handbook of the economics of innovation. Amsterdam: Elsevier.
  89. Hanson, B., Sugden, A., &amp; Alberts, B. (2011). Making data maximally available. Science, 331(6018), 649–649.<pub-id pub-id-type="pmid">21310971</pub-id><pub-id pub-id-type="doi"><a href="https://doi.org/10.1126/science.1203354" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1126/science.1203354</a></pub-id>
  90. Hanushek, E.A., &amp; Woessmann, L. (2007). The role of education quality for economic growth. World Bank Policy Research Working Paper, No. 4122. Retrieved on July 30, 2017, from <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://ssrn.com/abstract=960379">https://ssrn.com/abstract=960379</ext-link>.
  91. Hanushek, E.A., Machin, S.J., &amp; Woessmann, L. (Eds.). (2016). Handbook of the economics of education. Amsterdam: Elsevier.
  92. Hanushek, E.A., Woessmann, L., Jamison, E.A., &amp; Jamison, D.T. (2008). Education and economic growth. Education Next, 8(2). Retrieved on July 31, 2017, from <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="http://www.freepatentsonline.com/article/Education-Next/177556508.html">http://www.freepatentsonline.com/article/Education-Next/177556508.html</ext-link>.
  93. Helbing, D., &amp; Carbone, A.F. (Eds.). (2012). Participatory science and computing for our complex world. The European Physical Journal. Special Topics, Vol. 214. Retrieved on July 31, 2017, from <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://epjst.epj.org/index.php?option=com_toc&amp;url=/articles/epjst/abs/2012/14/contents/contents.html">https://epjst.epj.org/index.php?option=com_toc&amp;url=/articles/epjst/abs/2012/14/contents/contents.html</ext-link>.
  94. Hemlin, S. (1996). Research on research evaluation. Social Epistemology, 10(2), 209–250.<pub-id pub-id-type="doi"><a href="https://doi.org/10.1080/02691729608578815" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1080/02691729608578815</a></pub-id>
  95. Henderson, R., Jaffe, A.B., &amp; Trajtenberg, M. (1998). Universities as a source of commercial technology: A detailed analysis of university patenting, 196588. Review of Economics and Statistics, 80(1), 119–127.<pub-id pub-id-type="doi"><a href="https://doi.org/10.1162/003465398557221" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1162/003465398557221</a></pub-id>
  96. Hicks, D., Wouters, P., Waltman, L., De Rijcke, S., &amp; Rafols, I. (2015). Bibliometrics: The Leiden Manifesto for research metrics. Nature, 520, 429–431.<pub-id pub-id-type="doi"><a href="https://doi.org/10.1038/520429a" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1038/520429a</a></pub-id><pub-id pub-id-type="pmid">25903611</pub-id>
  97. Hill, S. (2016). Assessing (for) impact: Future assessment of the societal impact of research. Palgrave Communications. Retrieved on July 31, 2017, from <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="http://www.nature.com/articles/palcomms201673">http://www.nature.com/articles/palcomms201673</ext-link>.
  98. Hinrichs-Krapels, S., &amp; Grant, J. (2016). Exploring the effectiveness, efficiency and equity (3es) of research and research impact assessment. Palgrave Communications. Retrieved on July 31, 2017, from <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://www.nature.com/articles/palcomms201690#t2">https://www.nature.com/articles/palcomms201690#t2</ext-link>.
  99. Horstemeyer, M.F. (2009). Multiscale modeling: A review. In J. Leszczynski, &amp; M. Shukla (Eds.), Practical Aspects of Computational Chemistry (pp. 87–135). Dordrecht: Springer Netherlands.
  100. ISCED. (2011), International Standard Classification of Education, UNESCO Montreal, Canada. Retrieved on December 20, 2016, from <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="http://www.uis.unesco.org/Education/Documents/isced-2011-en.pdf">http://www.uis.unesco.org/Education/Documents/isced-2011-en.pdf</ext-link>.
  101. Johnes, G., &amp; Johnes, J. (Eds.). (2004). International handbook on the economics of education. Cheltenham: Edward Elgar.
  102. Khandker, S.R., Koolwal, G.B., &amp; Samad, H.A. (2010). Handbook on impact evaluation: Quantitative methods and practices. Washington, DC: World Bank Publications.
  103. Kitchin, R. (2014). Big data, new epistemologies and paradigm shifts. Big Data &amp; Society, 1(1), 1–12.
  104. Kuhn, T.S. (1962). The structure of scientific revolutions. Chicago: University of Chicago Press.
  105. Kuhn, T.S. (1969). The structure of scientific revolutions. Retrieved on July 31, 2017, from <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="http://projektintegracija.pravo.hr/_download/repository/Kuhn_Structure_of_Scientific_Revolutions.pdf/">http://projektintegracija.pravo.hr/_download/repository/Kuhn_Structure_of_Scientific_Revolutions.pdf/</ext-link>.
  106. Largent, M.A., &amp; Lane, J.I. (2012). STAR METRICS and the science of science policy. Review of Policy Research, 29(3), 431–438.<pub-id pub-id-type="doi"><a href="https://doi.org/10.1111/j.1541-1338.2012.00567.x" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1111/j.1541-1338.2012.00567.x</a></pub-id>
  107. Lenzerini, M. (2011). Ontology-based data management. CIKM, Proceedings of the 20<sup>th</sup> ACM International Conference on Information and Knowledge Management (pp. 5–6). New York: ACM.
  108. Leydesdorff, L. (2012). The triple helix, quadruple helix, and an N-tuple of helices: Explanatory models for analysing the knowledge-based economy? Journal of the Knowledge Economy, 3(1), 25–35.<pub-id pub-id-type="doi"><a href="https://doi.org/10.1007/s13132-011-0049-4" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s13132-011-0049-4</a></pub-id>
  109. Lutz, C.S. (2017). Alasdair Chalmers MacIntyre. In The Internet Encyclopedia of Philosophy. Retrieved on January 7, 2017, from <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="http://www.iep.utm.edu/mac-over/">http://www.iep.utm.edu/mac-over/</ext-link>.
  110. MacIntyre, A. (2006). The end of education: The fragmentation of the American university. Commonweal, 133(18), 10–14.
  111. MacIntyre, A. (2007). After virtue: A study in moral theory. 3<sup>rd</sup> ed. Notre Dame, Indiana: University of Notre Dame Press.
  112. MacIntyre, A. (1988). Whose justice? Which rationality? Notre Dame, Indiana: University of Notre Dame Press.
  113. Mansfield, E. (1991). Academic research and industrial innovation. Research Policy, 20(1), 1–12.<pub-id pub-id-type="doi"><a href="https://doi.org/10.1016/0048-7333(91)90080-A" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/0048-7333(91)90080-A</a></pub-id>
  114. Mansfield, E. (1995). Academic research underlying industrial innovations: Sources, characteristics, and financing. The Review of Economics and Statistics, 77(1), 55–65.<pub-id pub-id-type="doi"><a href="https://doi.org/10.2307/2109992" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2307/2109992</a></pub-id>
  115. Martin, B.R. (2016). Introduction to discussion paper on the sciences are different and the differences are important. Research Policy, 9(45), 1691.
  116. Mingers, J. (2006). Realising systems thinking: Knowledge and action in management science. Boston, MA: Springer.
  117. Mirowski, P., &amp; Sent, E.M. (2002). Science bought and sold: Essays in the economics of science. Chicago: University of Chicago Press.
  118. Moed, H.F. (2016). Altmetrics as traces of the computerization of the research process. In C.R. Sugimoto (Ed.), Theories of Informetrics and Scholarly Communication. A Festschrift in Honor of Blaise Cronin (pp. 360–371). Berlin: De Gruyter.
  119. Moed, H.F., &amp; van Leeuwen, T.N. (1996). Impact factors can mislead. Nature, 381 (6579), 186.<pub-id pub-id-type="pmid">8622752</pub-id><pub-id pub-id-type="doi"><a href="https://doi.org/10.1038/381186a0" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1038/381186a0</a></pub-id>
  120. Moed, H.F., Glänzel, W., &amp; Schmoch, U. (2004). Handbook of quantitative science and technology research. Dordrecht: Springer Netherlands.
  121. Moore, S., Neylon, C., Eve, M.P., O’Donnell, D., &amp; Pattinson, D. (2017). “Excellence R Us”: University research and the fetishisation of excellence. Palgrave Communications. Retrieved on July 31, 2017, from <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://www.nature.com/articles/palcomms2016105">https://www.nature.com/articles/palcomms2016105</ext-link>.
  122. Moreau, L., Freire, J., Futrelle, J., McGrath, R.E., Myers, J., &amp; Paulson, P. (2008). The open provenance model: An overview. In International Provenance and Annotation Workshop (pp. 323–326). Berlin: Springer.
  123. Morris, W.T. (1967). On the art of modeling. Management Science, 13(12), B707 – B717.<pub-id pub-id-type="doi"><a href="https://doi.org/10.1287/mnsc.13.12.B707" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1287/mnsc.13.12.B707</a></pub-id>
  124. Munafò, M.R., Nosek, B.A., Bishop, D.V., Button, K.S., Chambers, C.D., du Sert, N.P., … &amp; Ioannidis, J.P. (2017). A manifesto for reproducible science. Nature Human Behaviour, 1, 0021.
  125. Myung, I.J. (2000). The importance of complexity in model selection. Journal of mathematical psychology, 44(1), 190–204.<pub-id pub-id-type="doi"><a href="https://doi.org/10.1006/jmps.1999.1283" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1006/jmps.1999.1283</a></pub-id><pub-id pub-id-type="pmid">10733864</pub-id>
  126. National Research Council. (2014). Science of science and innovation policy: Principal investigators’ conference summary. Washington, DC: The National Academies Press.
  127. Nelson, R.R., &amp; Phelps, E.S. (1966). Investment in humans, technological diffusion, and economic growth. The American Economic Review, 56(1/2), 69–75.
  128. Nielsen, M. (2012). Reinventing discovery: The new era of networked science. Princeton: Princeton University Press.
  129. Nielsen, M.A., &amp; Chuang, I.L. (2010). Quantum computation and quantum information. 10<sup>th</sup> Anniversary Edition. Cambridge: Cambridge University Press.
  130. Nowotny, H., Scott, P., &amp; Gibbons, M. (2001). Re-thinking science: Knowledge and the public in an age of uncertainty. Cambridge: Polity.
  131. O’Donnell, C.J. (2016). Using information about technologies, markets and firm behaviour to decompose a proper productivity index. Journal of Econometrics, 190(2), 328–340.<pub-id pub-id-type="doi"><a href="https://doi.org/10.1016/j.jeconom.2015.06.009" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.jeconom.2015.06.009</a></pub-id>
  132. OECD. (2002). Frascati Manual: Proposed standard practice for surveys on research and experimental development. Retrieved on July 31, 2017, from <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="http://www.tubitak.gov.tr/tubitak_content_files/BTYPD/kilavuzlar/Frascati.pdf">http://www.tubitak.gov.tr/tubitak_content_files/BTYPD/kilavuzlar/Frascati.pdf</ext-link>.
  133. OECD. (2005). Oslo Manual: Guidelines for collecting and interpreting innovation data. 3<sup>rd</sup> edition. Paris: OECD Publishing.
  134. OECD. (2011). Quality framework and guidelines for OECD statistical activities. Paris: OECD Publishing.
  135. OECD (2015a). Making open science a reality. OECD Science, Technology and Industry Policy Papers No. 25. Paris: OECD Publishing.
  136. OECD. (2015b). Frascati Manual 2015: Guidelines for collecting and reporting data on research and experimental development. Retrieved on July 30, 2017, from <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="http://www.oecd.org/science/frascati-manual-2015-9789264239012-en.htm">http://www.oecd.org/science/frascati-manual-2015-9789264239012-en.htm</ext-link>.
  137. Owen, R., Macnaghten, P., &amp; Stilgoe, J. (2012). Responsible research and innovation: From science in society to science for society, with society. Science and Public Policy, 39(6), 751–760.<pub-id pub-id-type="doi"><a href="https://doi.org/10.1093/scipol/scs093" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1093/scipol/scs093</a></pub-id>
  138. Parent, C., &amp; Spaccapietra, S. (2000) Database integration: The key to data interoperability. In M.P. Papazoglou, &amp; Z. Zari (Eds.), Advances in Object-Oriented Data Modeling (pp. 221–253). Cambridge, MA: The MIT Press.
  139. Parmeter, C.F., Wan, A.T., &amp; Zhang, X. (2016). A model averaging stochastic frontier estimator, paper presented at the NAPW 2016 Quebec City, Canada, June 2016.
  140. Perkmann, M., Tartari, V., McKelvey, M., Autio, E., Brostrom, A., D’Este, P., … &amp; Krabel, S. (2013). Academic engagement and commercialisation: A review of the literature on university-industry relations. Research Policy, 42(2), 423–442.<pub-id pub-id-type="doi"><a href="https://doi.org/10.1016/j.respol.2012.09.007" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.respol.2012.09.007</a></pub-id>
  141. Pollock, S.M. (1976). Mathematical modeling: Applying the principles of the art studio. Engineering Education, 67(2), 167–171.
  142. Romer, P.M. (1986). Increasing returns and long-run growth. The Journal of Political Economy, 94(5), 1002–1037.<pub-id pub-id-type="doi"><a href="https://doi.org/10.1086/261420" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1086/261420</a></pub-id>
  143. Romer, P.M. (1994). The origins of endogenous growth. The Journal of Economic Perspectives, 8(1), 3–22.<pub-id pub-id-type="doi"><a href="https://doi.org/10.1257/jep.8.1.3" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1257/jep.8.1.3</a></pub-id>
  144. Roper, C.D., &amp; Hirth, M.A. (2005). A history of change in the third mission of higher education: The evolution of one-way service to interactive engagement. Journal of Higher Education Outreach and Engagement, 10(3), 3–21.
  145. Rosenberg, N., &amp; Nelson, R.R., (1994). American universities and technical advance in industry. Research Policy, 23(3), 323–348.<pub-id pub-id-type="doi"><a href="https://doi.org/10.1016/0048-7333(94)90042-6" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/0048-7333(94)90042-6</a></pub-id>
  146. Saltelli, A., &amp; Funtowicz, S. (2014). When all models are wrong. Issues in Science and Technology, 30(2), 79–85.
  147. Saltelli, A., &amp; Funtowicz, S. (2015). Evidence-based policy at the end of the Cartesian dream: The case of mathematical modelling. In G. Pereira, &amp; S. Funtowicz (Eds.), Science, Philosophy and Sustainability: The End of the Cartesian Dream. Beyond the Techno–Scientific Worldview. Routledge’s Series: Explorations in Sustainability and Governance (pp. 147–162). London: Routledge.
  148. Saltelli, A., Guimaraes Pereira, A., van der Sluijs, J.P., &amp; Funtowicz, S. (2013). What do I make of your latinorum? Sensitivity auditing of mathematical modelling. International Journal of Foresight and Innovation Policy, 9(2–3–4), 213–234.<pub-id pub-id-type="doi"><a href="https://doi.org/10.1504/IJFIP.2013.058610" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1504/IJFIP.2013.058610</a></pub-id>
  149. Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., … &amp; Tarantola, S. (2008). Global sensitivity analysis: The primer. Chichester, UK: John Wiley &amp; Sons.
  150. Salter, A.J., &amp; Martin, B.R. (2001). The economic benefits of publicly funded basic research: A critical review. Research Policy, 30(3), 509–532.<pub-id pub-id-type="doi"><a href="https://doi.org/10.1016/S0048-7333(00)00091-3" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/S0048-7333(00)00091-3</a></pub-id>
  151. Scharnhorst, A., Borner, K., van den Besselaar, P. (Eds.). (2012). Models of science dynamics: Encounters between complexity theory and information sciences. Berlin: Springer.
  152. Simar, L., &amp; Wilson, P.W. (2015). Statistical approaches for nonparametric frontier models: A guided tour. International Statistical Review, 83(1), 77–110.<pub-id pub-id-type="doi"><a href="https://doi.org/10.1111/insr.12056" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1111/insr.12056</a></pub-id>
  153. Solow, R.M. (1957). Technical change and the aggregate production function. The Review of Economics and Statistics, 39(3): 554–562.
  154. Stephan, P.E. (2012). How economics shapes science. Cambridge, MA: Harvard University Press.
  155. Stilgoe, J., Owen, R., &amp; Macnaghten, P. (2013). Developing a framework for responsible innovation. Research Policy, 42(9), 1568–1580.<pub-id pub-id-type="doi"><a href="https://doi.org/10.1016/j.respol.2013.05.008" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.respol.2013.05.008</a></pub-id>
  156. Teixeira, P.N., &amp; Dill, D.D. (Eds.). (2011). Public vices, private virtues? Assessing the effects of marketization in higher education (Vol. 2). Rotterdam: Sense Publishers.
  157. Teixeira, P., Jongbloed, B., Dill, D., &amp; Amaral, A. (2004). Markets in higher education: Rhetoric or reality? Dordrecht: Kluwer.
  158. Vandenbussche, J., Aghion, P., &amp; Meghir, C. (2006). Growth, distance to frontier and composition of human capital. Journal of Economic Growth, 11(2), 97–127.<pub-id pub-id-type="doi"><a href="https://doi.org/10.1007/s10887-006-9002-y" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s10887-006-9002-y</a></pub-id>
  159. Veugelers, R., &amp; Del Rey, E. (2014). The contribution of universities to innovation, (regional) growth and employment. EENEE Analytical Report. Munich, Germany: EENEE. Retrieved on July 31, 2017, from <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="http://www.voced.edu.au/node/82516">http://www.voced.edu.au/node/82516</ext-link>.
  160. Vinkler, P. (2010). The evaluation of research by scientometric indicators. Cambridge: Chandos Publishing.
  161. von Hippel, E. (2005). Democratizing innovation. Cambridge, MA: The MIT Press.
  162. von Hippel, E. (2016). Free innovation. Cambridge, MA: The MIT Press.
  163. Weinan, E. (2011). Principles of multiscale modeling. Cambridge: Cambridge University Press.
  164. West, J., Salter, A., Vanhaverbeke, W., &amp; Chesbrough, H. (2014). Open innovation: The next decade. Research Policy, 43(5), 805–811.<pub-id pub-id-type="doi"><a href="https://doi.org/10.1016/j.respol.2014.03.001" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.respol.2014.03.001</a></pub-id>
  165. Whitley, R., &amp; Gläser, J. (Eds.). (2007). The changing governance of the sciences: The advent of research evaluation systems. Dordrecht: Springer Netherlands.
  166. Wilsdon, J., Allen, L., Belfiore, E., Campbell, P., Curry, S., Hill, S., Jones, R., … &amp; Johnson, B. (2015). The metric tide: Report of the independent review of the role of metrics in research assessment and management. Retrieved on July 31, 2017, from <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="http://dera.ioe.ac.uk/23424/">http://dera.ioe.ac.uk/23424/</ext-link>.
  167. Willemain, T.R. (1994). Insights on modeling from a dozen experts. Operations Research, 42(2), 213–222.<pub-id pub-id-type="doi"><a href="https://doi.org/10.1287/opre.42.2.213" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1287/opre.42.2.213</a></pub-id>
  168. Zucchini, W. (2000). An introduction to model selection. Journal of Mathematical Psychology, 44(1), 41–61.<pub-id pub-id-type="doi"><a href="https://doi.org/10.1006/jmps.1999.1276" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1006/jmps.1999.1276</a></pub-id><pub-id pub-id-type="pmid">10733857</pub-id>
DOI: https://doi.org/10.1515/jdis-2017-0018 | Journal eISSN: 2543-683X | Journal ISSN: 2096-157X
Language: English
Page range: 7 - 42
Submitted on: Jul 30, 2017
Accepted on: Sep 6, 2017
Published on: Dec 29, 2017
Published by: Chinese Academy of Sciences, National Science Library
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2017 Cinzia Daraio, published by Chinese Academy of Sciences, National Science Library
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.