Acemoglu, D., Aghion, P., & Zilibotti, F. (2003). Vertical integration and distance to frontier. Journal of the European Economic Association, 1(2–3), 630–638.<pub-id pub-id-type="doi"><a href="https://doi.org/10.1162/154247603322391260" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1162/154247603322391260</a></pub-id>
Acemoglu, D., Aghion, P., & Zilibotti, F. (2006). Distance to frontier, selection, and economic growth. Journal of the European Economic Association, 4(1), 37–74.<pub-id pub-id-type="doi"><a href="https://doi.org/10.1162/jeea.2006.4.1.37" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1162/jeea.2006.4.1.37</a></pub-id>
Adams, J.D. (1990). Fundamental stocks of knowledge and productivity growth. Journal of Political Economy, 98(4), 673–702.<pub-id pub-id-type="doi"><a href="https://doi.org/10.1086/261702" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1086/261702</a></pub-id>
Agarwal, R., & Dhar, V. (2014). Editorial big data, data science, and analytics: The opportunity and challenge for IS research. Information Systems Research, 25(3), 443–448.<pub-id pub-id-type="doi"><a href="https://doi.org/10.1287/isre.2014.0546" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1287/isre.2014.0546</a></pub-id>
Aghion, P., David, P.A., & Foray, D. (2009). Science, technology and innovation for economic growth: Linking policy research and practice in ‘STIG Systems’. Research Policy, 38(4), 681–693.<pub-id pub-id-type="doi"><a href="https://doi.org/10.1016/j.respol.2009.01.016" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.respol.2009.01.016</a></pub-id>
Anderson C. (2008). The end of theory: The data deluge makes the scientific method obsolete. Wired Magazine. Retrieved on July 30, 2017, from <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://www.wired.com/2008/06/pb-theory/">https://www.wired.com/2008/06/pb-theory/</ext-link>.
Audretsch, D.B., Bozeman, B., Combs, K.L., Feldman, M., Link, A.N., Siegel, D.S., ... & Wessner, C. (2002). The economics of science and technology. The Journal of Technology Transfer, 27(2), 155–203.<pub-id pub-id-type="doi"><a href="https://doi.org/10.1023/A:1014382532639" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1023/A:1014382532639</a></pub-id>
Bădin, L., Daraio, C., & Simar, L. (2012). How to measure the impact of environmental factors in a nonparametric production model. European Journal of Operational Research, 223(3), 818–833.<pub-id pub-id-type="doi"><a href="https://doi.org/10.1016/j.ejor.2012.06.028" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.ejor.2012.06.028</a></pub-id>
Bădin, L., Daraio, C., & Simar, L. (2014). Explaining inefficiency in nonparametric production models: The state of the art. Annals of Operations Research, 214(1), 5–30.<pub-id pub-id-type="doi"><a href="https://doi.org/10.1007/s10479-012-1173-7" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s10479-012-1173-7</a></pub-id>
Bammer, G. (2016). What constitutes appropriate peer review for interdisciplinary research? Palgrave Communications, 2 (palcomms201617). Retrieved on July 30, 2017, from <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="http://www.nature.com/articles/palcomms201617">http://www.nature.com/articles/palcomms201617</ext-link>.
Barré, R. (2004). S&T indicators for policy making in a changing science–society relationship. In H. Moed, W. Glänzel, & U. Schmoch (Eds.), Handbook of Quantitative Science and Technology Research (pp. 115–132). Dordrecht: Springer Netherlands.
Benessia, A., Funtowicz, S., Giampietro, M., Pereira, Â.G., Ravetz, J., Saltelli, A., ... & van der Sluijs, J.P. (2016). Science on the verge. Tempe, AZ: Consortium for Science, Policy, & Outcomes at Arizona State University.
Blaug, M. (1966). Economics of education; a selected annotated bibliography (No. 370.193 B5). Retrieved on July 30, 2017, from <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="http://www.sciencedirect.com/science/article/pii/B9780080206271500025">http://www.sciencedirect.com/science/article/pii/B9780080206271500025</ext-link>.
Bogetoft, P., Fried, H.O., & Eeckaut, P.V. (2007). The university benchmarker: An interactive computer approach. In A. Bonaccorsi, & C. Daraio (Eds.), Universities and Strategic Knowledge Creation: Specialization and Performance in Europe (pp. 443–462). Cheltenham: Edward Elgar Publishing.
Bonaccorsi, A., & Daraio, C. (2004). Econometric approaches to the analysis of productivity of RD systems. Production functions and production frontiers. In H.F. Moed, W. Glänzel, & U. Schmoch (Eds.), Handbook of Quantitative Science and Technology Research (pp. 51–74). Dordrecht: Springer Netherlands.
Bornmann, L. (2013). What is societal impact of research and how can it be assessed? A literature survey. Journal of the American Society for Information Science and Technology, 64(2), 217–233.<pub-id pub-id-type="doi"><a href="https://doi.org/10.1002/asi.22803" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1002/asi.22803</a></pub-id>
Borrás, S., & Edquist, C. (2013). The choice of innovation policy instruments. Technological Forecasting and Social Change, 80(8), 1513–1522.<pub-id pub-id-type="doi"><a href="https://doi.org/10.1016/j.techfore.2013.03.002" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.techfore.2013.03.002</a></pub-id>
Brunsson, N., & Jacobsson, B. (2002b). The pros and cons of standardization—An epilogue. In A World of Standards (pp. 169–173). Oxford: Oxford University Press.
Cronin, B. (2013). Thinking about data. Journal of the American Society for Information Science and Technology, 64(3), 435–436.<pub-id pub-id-type="doi"><a href="https://doi.org/10.1002/asi.22928" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1002/asi.22928</a></pub-id>
Cronin, B., & Sugimoto, C.R. (Eds.). (2014). Beyond bibliometrics: Harnessing multidimensional indicators of scholarly impact. Cambridge, MA: The MIT Press.
Cronin, B., & Sugimoto, C.R. (Eds.). (2015). Scholarly metrics under the microscope: From citation analysis to academic auditing. Medford, NJ: Information Today.
D’Ariano, G.M., & Perinotti, P. (2016). Quantum theory is an information theory. Foundations of Physics, 46(3), 269–281.<pub-id pub-id-type="doi"><a href="https://doi.org/10.1007/s10701-015-9935-0" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s10701-015-9935-0</a></pub-id>
Daraio, C. (2015). Assessing the efficiency, effectiveness and impact of education in the age of big data: Challenges and a way forward. Keynote presentation at Leuven LEER Workshop ‘Efficiency in Education and the Use of Big Data’, November 19–20, 2015, Leuven (Belgium).
Daraio, C. (2017a). Assessing research and its impacts: The generalized implementation problem and a doubly-conditional performance evaluation model, paper presented at the ISSI 2017 Conference, October 2017, Wuhan (China).
Daraio, C. (2017b). A doubly conditional performance evaluation model, the democratization of evaluation and altmetrics, paper presented at the STI 2017 Conference, September 2017, Paris.
Daraio, C. (in press). Econometric approaches to the measurement of research productivity. In W. Glänzel, H.F. Moed, H. Schmoch, & M. Thelwall (Eds.), Springer Handbook of Science and Technology Indicators.
Daraio, C., & Simar, L. (2014). Directional distances and their robust versions: Computational and testing issues. European Journal of Operational Research, 237(1), 358–369.<pub-id pub-id-type="doi"><a href="https://doi.org/10.1016/j.ejor.2014.01.064" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.ejor.2014.01.064</a></pub-id>
Daraio, C., & Simar, L. (2007). Advanced robust and nonparametric methods in efficiency analysis. Methodology and applications. New York: Springer.
Daraio, C., Simar, L., & Wilson, P.W. (2017). Central limit theorems for conditional efficiency measures and tests of the “separability” condition in nonparametric two-stage models of production. The Econometrics Journal. Retrieved on July 30, 2017, from <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1111/ectj.12103" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1111/ectj.12103</a>">https://doi.org/10.1111/ectj.12103</ext-link>.
Daraio, C., & Glänzel, W. (2016). Grand challenges in data integration—state of the art and future perspectives: An introduction. Scientometrics, 108 (1), 391–400.<pub-id pub-id-type="doi"><a href="https://doi.org/10.1007/s11192-016-1914-5" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s11192-016-1914-5</a></pub-id>
Daraio, C., Lenzerini, M., Leporelli, C., Moed, H.F., Naggar, P., Bonaccorsi, A., & Bartolucci, A. (2016a). Data integration for research and innovation policy: An ontology-based data management approach. Scientometrics, 106(2), 857–871.<pub-id pub-id-type="doi"><a href="https://doi.org/10.1007/s11192-015-1814-0" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s11192-015-1814-0</a></pub-id>
Daraio, C., Lenzerini, M., Leporelli, C., Naggar, P., Bonaccorsi, A., & Bartolucci, A. (2016b). The advantages of an Ontology-Based Data Management approach: Openness, interoperability and data quality. Scientometrics, 108 (1), 441–455.<pub-id pub-id-type="doi"><a href="https://doi.org/10.1007/s11192-016-1913-6" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s11192-016-1913-6</a></pub-id>
DeMillo, R.A., & Young, A.J. (2015). Revolution in higher education: How a small band of innovators will make college accessible and affordable. Cambridge, MA: The MIT Press.
Ding, Y., & Stirling, K. (2016). Data-driven discovery: A new era of exploiting the literature and data. Journal of Data and Information Science, 1(4), 1–9.<pub-id pub-id-type="doi"><a href="https://doi.org/10.20309/jdis.201622" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.20309/jdis.201622</a></pub-id>
Edquist, C. (2001). The systems of innovation approach and innovation policy: An account of the state of the art. In Druid Nelson and Winter Conference 2001 (pp. 12–15). Denmark: Aalborg University.
Edwards, P.N., Jackson, S.J., Chalmers, M.K., Bowker, G.C., Borgman, C.L., Ribes, D., … & Calvert, S. (2013). Knowledge infrastructures: Intellectual frameworks and research challenges (p. 40). Ann Arbor, MI: University of Michigan. Retrieved on July 30, 2017, from <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="http://deepblue.lib.umich.edu/handle/2027.42/97552">http://deepblue.lib.umich.edu/handle/2027.42/97552</ext-link>.
Egghe, L., & Rousseau, R. (1990). Introduction to informetrics: Quantitative methods in library, documentation and information science. Amsterdam: Elsevier.
Ekbia, H., Mattioli, M., Kouper, I., Arave, G., Ghazinejad, A., Bowman, T., … & Sugimoto, C.R. (2015). Big data, bigger dilemmas: A critical review. Journal of the Association for Information Science and Technology, 66(8), 1523–1545<pub-id pub-id-type="doi"><a href="https://doi.org/10.1002/asi.23294" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1002/asi.23294</a></pub-id>
Etzkowitz, H., & Leydesdorff, L. (2000). The dynamics of innovation: From national systems and mode 2 to a triple helix of university-industry-government relations. Research Policy, 29(2), 109–123.<pub-id pub-id-type="doi"><a href="https://doi.org/10.1016/S0048-7333(99)00055-4" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/S0048-7333(99)00055-4</a></pub-id>
European Commission (2014). Expert Group to support the development of tailor-made impact assessment methodologies for ERA (European Research Area), Brussels, Belgium.
Fealing, K.H., Lane, J.I., Marburger, J.H. JIII, & Shipp, S.S. (Eds.) (2011). The science of science policy, a handbook. Stanford: Stanford University Press.
Floridi, L. (2012). The road to the philosophy of information. In H. Demir (Eds.), Luciano Floridi’s Philosophy of Technology (pp. 245–271). Dordrecht: Springer Netherlands.
Frické, M. (2015). Big data and its epistemology. Journal of the Association for Information Science and Technology, 66 (4), 651–661.<pub-id pub-id-type="doi"><a href="https://doi.org/10.1002/asi.23212" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1002/asi.23212</a></pub-id>
Funtowicz, S.O., & Ravetz, J.R. (1990). Science for policy: Uncertainty and quality. In Uncertainty and Quality in Science for Policy (pp. 7–16). Dordrecht: Springer Netherlands.
Furner, J. (2014). The ethics of evaluative bibliometrics. In B. Cronin, & C. Sugimoto (Eds.), Beyond Bibliometrics: Harnessing Multidimensional Indicators of Scholarly Impact (pp. 85–107). Cambridge, MA: MIT Press.
Gibbons, M., Limoges, C., Nowotny, H., Schwartzman, S., Scott, P., & Trow, M. (1994). The new production of knowledge: The dynamics of science and research in contemporary societies. London: Sage.
Glänzel, W. (1996). The need for standards in bibliometric research and technology. Scientometrics, 35(2), 167–176.<pub-id pub-id-type="doi"><a href="https://doi.org/10.1007/BF02018475" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/BF02018475</a></pub-id>
Glänzel, W., & Schoepflin, U. (1994). Little scientometrics, big scientometrics… and beyond? Scientometrics, 30(2–3), 375–384.<pub-id pub-id-type="doi"><a href="https://doi.org/10.1007/BF02018107" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/BF02018107</a></pub-id>
Glänzel, W. (2010). On reliability and robustness of scientometrics indicators based on stochastic models. An evidence-based opinion paper. Journal of Informetrics, 4(3), 313–319.
Godin, B. (2002). Outline for a history of science measurement. Science, Technology, & Human Values, 27(1), 3–27.<pub-id pub-id-type="doi"><a href="https://doi.org/10.1177/016224390202700101" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1177/016224390202700101</a></pub-id>
Griliches, Z. (1986). Economic data issues. In Z. Griliches, & M.D. Intriligator (Eds.), Handbook of Econometrics Volume III (pp. 1465–1514). Amsterdam: Elsevier.
Hanson, B., Sugden, A., & Alberts, B. (2011). Making data maximally available. Science, 331(6018), 649–649.<pub-id pub-id-type="pmid">21310971</pub-id><pub-id pub-id-type="doi"><a href="https://doi.org/10.1126/science.1203354" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1126/science.1203354</a></pub-id>
Hanushek, E.A., & Woessmann, L. (2007). The role of education quality for economic growth. World Bank Policy Research Working Paper, No. 4122. Retrieved on July 30, 2017, from <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://ssrn.com/abstract=960379">https://ssrn.com/abstract=960379</ext-link>.
Helbing, D., & Carbone, A.F. (Eds.). (2012). Participatory science and computing for our complex world. The European Physical Journal. Special Topics, Vol. 214. Retrieved on July 31, 2017, from <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://epjst.epj.org/index.php?option=com_toc&url=/articles/epjst/abs/2012/14/contents/contents.html">https://epjst.epj.org/index.php?option=com_toc&url=/articles/epjst/abs/2012/14/contents/contents.html</ext-link>.
Hemlin, S. (1996). Research on research evaluation. Social Epistemology, 10(2), 209–250.<pub-id pub-id-type="doi"><a href="https://doi.org/10.1080/02691729608578815" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1080/02691729608578815</a></pub-id>
Henderson, R., Jaffe, A.B., & Trajtenberg, M. (1998). Universities as a source of commercial technology: A detailed analysis of university patenting, 196588. Review of Economics and Statistics, 80(1), 119–127.<pub-id pub-id-type="doi"><a href="https://doi.org/10.1162/003465398557221" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1162/003465398557221</a></pub-id>
Hicks, D., Wouters, P., Waltman, L., De Rijcke, S., & Rafols, I. (2015). Bibliometrics: The Leiden Manifesto for research metrics. Nature, 520, 429–431.<pub-id pub-id-type="doi"><a href="https://doi.org/10.1038/520429a" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1038/520429a</a></pub-id><pub-id pub-id-type="pmid">25903611</pub-id>
Hill, S. (2016). Assessing (for) impact: Future assessment of the societal impact of research. Palgrave Communications. Retrieved on July 31, 2017, from <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="http://www.nature.com/articles/palcomms201673">http://www.nature.com/articles/palcomms201673</ext-link>.
Hinrichs-Krapels, S., & Grant, J. (2016). Exploring the effectiveness, efficiency and equity (3es) of research and research impact assessment. Palgrave Communications. Retrieved on July 31, 2017, from <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://www.nature.com/articles/palcomms201690#t2">https://www.nature.com/articles/palcomms201690#t2</ext-link>.
Horstemeyer, M.F. (2009). Multiscale modeling: A review. In J. Leszczynski, & M. Shukla (Eds.), Practical Aspects of Computational Chemistry (pp. 87–135). Dordrecht: Springer Netherlands.
ISCED. (2011), International Standard Classification of Education, UNESCO Montreal, Canada. Retrieved on December 20, 2016, from <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="http://www.uis.unesco.org/Education/Documents/isced-2011-en.pdf">http://www.uis.unesco.org/Education/Documents/isced-2011-en.pdf</ext-link>.
Khandker, S.R., Koolwal, G.B., & Samad, H.A. (2010). Handbook on impact evaluation: Quantitative methods and practices. Washington, DC: World Bank Publications.
Kuhn, T.S. (1969). The structure of scientific revolutions. Retrieved on July 31, 2017, from <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="http://projektintegracija.pravo.hr/_download/repository/Kuhn_Structure_of_Scientific_Revolutions.pdf/">http://projektintegracija.pravo.hr/_download/repository/Kuhn_Structure_of_Scientific_Revolutions.pdf/</ext-link>.
Largent, M.A., & Lane, J.I. (2012). STAR METRICS and the science of science policy. Review of Policy Research, 29(3), 431–438.<pub-id pub-id-type="doi"><a href="https://doi.org/10.1111/j.1541-1338.2012.00567.x" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1111/j.1541-1338.2012.00567.x</a></pub-id>
Lenzerini, M. (2011). Ontology-based data management. CIKM, Proceedings of the 20<sup>th</sup> ACM International Conference on Information and Knowledge Management (pp. 5–6). New York: ACM.
Leydesdorff, L. (2012). The triple helix, quadruple helix, and an N-tuple of helices: Explanatory models for analysing the knowledge-based economy? Journal of the Knowledge Economy, 3(1), 25–35.<pub-id pub-id-type="doi"><a href="https://doi.org/10.1007/s13132-011-0049-4" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s13132-011-0049-4</a></pub-id>
Lutz, C.S. (2017). Alasdair Chalmers MacIntyre. In The Internet Encyclopedia of Philosophy. Retrieved on January 7, 2017, from <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="http://www.iep.utm.edu/mac-over/">http://www.iep.utm.edu/mac-over/</ext-link>.
Mansfield, E. (1991). Academic research and industrial innovation. Research Policy, 20(1), 1–12.<pub-id pub-id-type="doi"><a href="https://doi.org/10.1016/0048-7333(91)90080-A" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/0048-7333(91)90080-A</a></pub-id>
Mansfield, E. (1995). Academic research underlying industrial innovations: Sources, characteristics, and financing. The Review of Economics and Statistics, 77(1), 55–65.<pub-id pub-id-type="doi"><a href="https://doi.org/10.2307/2109992" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2307/2109992</a></pub-id>
Moed, H.F. (2016). Altmetrics as traces of the computerization of the research process. In C.R. Sugimoto (Ed.), Theories of Informetrics and Scholarly Communication. A Festschrift in Honor of Blaise Cronin (pp. 360–371). Berlin: De Gruyter.
Moore, S., Neylon, C., Eve, M.P., O’Donnell, D., & Pattinson, D. (2017). “Excellence R Us”: University research and the fetishisation of excellence. Palgrave Communications. Retrieved on July 31, 2017, from <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://www.nature.com/articles/palcomms2016105">https://www.nature.com/articles/palcomms2016105</ext-link>.
Moreau, L., Freire, J., Futrelle, J., McGrath, R.E., Myers, J., & Paulson, P. (2008). The open provenance model: An overview. In International Provenance and Annotation Workshop (pp. 323–326). Berlin: Springer.
Myung, I.J. (2000). The importance of complexity in model selection. Journal of mathematical psychology, 44(1), 190–204.<pub-id pub-id-type="doi"><a href="https://doi.org/10.1006/jmps.1999.1283" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1006/jmps.1999.1283</a></pub-id><pub-id pub-id-type="pmid">10733864</pub-id>
National Research Council. (2014). Science of science and innovation policy: Principal investigators’ conference summary. Washington, DC: The National Academies Press.
Nelson, R.R., & Phelps, E.S. (1966). Investment in humans, technological diffusion, and economic growth. The American Economic Review, 56(1/2), 69–75.
O’Donnell, C.J. (2016). Using information about technologies, markets and firm behaviour to decompose a proper productivity index. Journal of Econometrics, 190(2), 328–340.<pub-id pub-id-type="doi"><a href="https://doi.org/10.1016/j.jeconom.2015.06.009" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.jeconom.2015.06.009</a></pub-id>
OECD. (2002). Frascati Manual: Proposed standard practice for surveys on research and experimental development. Retrieved on July 31, 2017, from <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="http://www.tubitak.gov.tr/tubitak_content_files/BTYPD/kilavuzlar/Frascati.pdf">http://www.tubitak.gov.tr/tubitak_content_files/BTYPD/kilavuzlar/Frascati.pdf</ext-link>.
OECD. (2015b). Frascati Manual 2015: Guidelines for collecting and reporting data on research and experimental development. Retrieved on July 30, 2017, from <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="http://www.oecd.org/science/frascati-manual-2015-9789264239012-en.htm">http://www.oecd.org/science/frascati-manual-2015-9789264239012-en.htm</ext-link>.
Owen, R., Macnaghten, P., & Stilgoe, J. (2012). Responsible research and innovation: From science in society to science for society, with society. Science and Public Policy, 39(6), 751–760.<pub-id pub-id-type="doi"><a href="https://doi.org/10.1093/scipol/scs093" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1093/scipol/scs093</a></pub-id>
Parent, C., & Spaccapietra, S. (2000) Database integration: The key to data interoperability. In M.P. Papazoglou, & Z. Zari (Eds.), Advances in Object-Oriented Data Modeling (pp. 221–253). Cambridge, MA: The MIT Press.
Parmeter, C.F., Wan, A.T., & Zhang, X. (2016). A model averaging stochastic frontier estimator, paper presented at the NAPW 2016 Quebec City, Canada, June 2016.
Perkmann, M., Tartari, V., McKelvey, M., Autio, E., Brostrom, A., D’Este, P., … & Krabel, S. (2013). Academic engagement and commercialisation: A review of the literature on university-industry relations. Research Policy, 42(2), 423–442.<pub-id pub-id-type="doi"><a href="https://doi.org/10.1016/j.respol.2012.09.007" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.respol.2012.09.007</a></pub-id>
Roper, C.D., & Hirth, M.A. (2005). A history of change in the third mission of higher education: The evolution of one-way service to interactive engagement. Journal of Higher Education Outreach and Engagement, 10(3), 3–21.
Rosenberg, N., & Nelson, R.R., (1994). American universities and technical advance in industry. Research Policy, 23(3), 323–348.<pub-id pub-id-type="doi"><a href="https://doi.org/10.1016/0048-7333(94)90042-6" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/0048-7333(94)90042-6</a></pub-id>
Saltelli, A., & Funtowicz, S. (2015). Evidence-based policy at the end of the Cartesian dream: The case of mathematical modelling. In G. Pereira, & S. Funtowicz (Eds.), Science, Philosophy and Sustainability: The End of the Cartesian Dream. Beyond the Techno–Scientific Worldview. Routledge’s Series: Explorations in Sustainability and Governance (pp. 147–162). London: Routledge.
Saltelli, A., Guimaraes Pereira, A., van der Sluijs, J.P., & Funtowicz, S. (2013). What do I make of your latinorum? Sensitivity auditing of mathematical modelling. International Journal of Foresight and Innovation Policy, 9(2–3–4), 213–234.<pub-id pub-id-type="doi"><a href="https://doi.org/10.1504/IJFIP.2013.058610" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1504/IJFIP.2013.058610</a></pub-id>
Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., … & Tarantola, S. (2008). Global sensitivity analysis: The primer. Chichester, UK: John Wiley & Sons.
Scharnhorst, A., Borner, K., van den Besselaar, P. (Eds.). (2012). Models of science dynamics: Encounters between complexity theory and information sciences. Berlin: Springer.
Stilgoe, J., Owen, R., & Macnaghten, P. (2013). Developing a framework for responsible innovation. Research Policy, 42(9), 1568–1580.<pub-id pub-id-type="doi"><a href="https://doi.org/10.1016/j.respol.2013.05.008" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.respol.2013.05.008</a></pub-id>
Teixeira, P.N., & Dill, D.D. (Eds.). (2011). Public vices, private virtues? Assessing the effects of marketization in higher education (Vol. 2). Rotterdam: Sense Publishers.
Vandenbussche, J., Aghion, P., & Meghir, C. (2006). Growth, distance to frontier and composition of human capital. Journal of Economic Growth, 11(2), 97–127.<pub-id pub-id-type="doi"><a href="https://doi.org/10.1007/s10887-006-9002-y" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s10887-006-9002-y</a></pub-id>
Veugelers, R., & Del Rey, E. (2014). The contribution of universities to innovation, (regional) growth and employment. EENEE Analytical Report. Munich, Germany: EENEE. Retrieved on July 31, 2017, from <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="http://www.voced.edu.au/node/82516">http://www.voced.edu.au/node/82516</ext-link>.
West, J., Salter, A., Vanhaverbeke, W., & Chesbrough, H. (2014). Open innovation: The next decade. Research Policy, 43(5), 805–811.<pub-id pub-id-type="doi"><a href="https://doi.org/10.1016/j.respol.2014.03.001" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.respol.2014.03.001</a></pub-id>
Whitley, R., & Gläser, J. (Eds.). (2007). The changing governance of the sciences: The advent of research evaluation systems. Dordrecht: Springer Netherlands.
Wilsdon, J., Allen, L., Belfiore, E., Campbell, P., Curry, S., Hill, S., Jones, R., … & Johnson, B. (2015). The metric tide: Report of the independent review of the role of metrics in research assessment and management. Retrieved on July 31, 2017, from <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="http://dera.ioe.ac.uk/23424/">http://dera.ioe.ac.uk/23424/</ext-link>.
Zucchini, W. (2000). An introduction to model selection. Journal of Mathematical Psychology, 44(1), 41–61.<pub-id pub-id-type="doi"><a href="https://doi.org/10.1006/jmps.1999.1276" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1006/jmps.1999.1276</a></pub-id><pub-id pub-id-type="pmid">10733857</pub-id>