Have a personal or library account? Click to login

Enhancing Navigability: An Algorithm for Constructing Tag Trees

By:
Open Access
|Mar 2017

References

  1. Almoqhim, F., Millard, D.E., & Shadbolt, N. (2013). An approach to building high-quality tag hierarchies from crowdsourced taxonomic tag pairs. In A. Jatowt et al. (Eds.), Social Informatics (pp. 129–138). Berlin: Springer International Publishing.
  2. Agrawal, R., Gollapudi, S., Halverson, A., & Ieong, S. (2009). Diversifying search results. In Proceedings of the Second ACM International Conference on Web Search and Data Mining (pp. 5–14). New York: ACM.
  3. Begelman, G., Keller, P., & Smadja, F. (2006). Automated tag clustering: Improving search and exploration in the tag space. In Collaborative Web Tagging Workshop at WWW2006, Edinburgh, Scotland. Retrieved on February 4, 2017, from http://www.ra.ethz.ch/cdstore/www2006/www.rawsugar.com/www2006/20.pdf.
  4. Benz, D., Hotho, A., Stützer, S., & Stumme, G. (2010). Semantics made by you and me: Selfemerging ontologies can capture the diversity of shared knowledge. In Proceedings of the 2nd Web Science Conference (WebSci10), Raleigh, NC, USA. Retrieved on February 4, 2017, from http://journal.webscience.org/361/.
  5. Camiña, S.L. (2010). A comparison of taxonomy generation techniques using bibliometric methods: Applied to research strategy formulation. Retrieved on January 10, 2017, from http://dspace.mit.edu/handle/1721.1/62632.MIT.2010.
  6. Candan, K.S., Di Caro, L., & Sapino, M.L. (2008). Creating tag hierarchies for effective navigation in social media. In Proceedings of the 2008 ACM Workshop on Search in Social Media - SSM ’08 (pp. 75–82). New York: ACM.
  7. Carbonell, J., & Goldstein, J. (1998). The use of MMR, diversity-based reranking for reordering documents and producing summaries. In Proceedings of the 21st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (pp. 335–336). New York: ACM.
  8. Chen, C., Luo, P., Liu, X., & Lu, Y. (2012). The structure patterns of Web resources’ hierarchical organization (in Chinese). Journal of Library Science in China, 38(202), 72–80.
  9. Dellschaft, K., & Staab, S. (2006). On how to perform a gold standard based evaluation of ontology learning. In The Semantic Web-ISWC 2006 (pp. 228–241). Berlin: Springer-Verlag.
  10. Gemmell, J., Shepitsen, A., Mobasher, B., & Burke, R. (2008). Personalizing navigation in folksonomies using hierarchical tag clustering. In Proceedings of Data Warehousing and Knowledge Discovery (pp. 196–205). Berlin: Springer-Verlag.
  11. Golub, K., & Lykke, M. (2009). Automated classification of web pages in hierarchical browsing. Journal of Documentation, 65(6), 901–925.
  12. Halpin, H., Robu, V., & Shepherd, H. (2007). The complex dynamics of collaborative tagging. In Proceedings of the 16th International Conference on World Wide Web (pp. 211–220). New York: ACM.
  13. Helic, D., Trattner, C., Strohmaier, M., & Andrews, K. (2010). On the navigability of social tagging systems. In 2010 IEEE Second International Conference on Social Computing (pp. 161–168). Washington, DC: IEEE Computer Society.
  14. Helic, D., Strohmaier, M., Trattner, C., Muhr, M., & Lerman, K. (2011). Pragmatic evaluation of folksonomies. In Proceedings of the 20th International Conference on World Wide Web (pp. 417–426). New York: ACM.
  15. Helic, D., & Strohmaier, M. (2011). Building directories for social tagging systems. In Proceedings of the 20th ACM International Conference on Information and Knowledge Management (pp. 525–534). New York: ACM.
  16. Heymann, P., & Garcia-Molina, H. (2006). Collaborative creation of communal hierarchical taxonomies in social tagging systems. Info Lab Technical Report 2006-10. Retrieved on January 10, 2016, from http://ilpubs.stanford.edu:8090/775/1/2006-10.pdf.
  17. Hirsch, J.E. (2005). An index to quantify an individual’s scientific research output. In Proceedings of the National Academy of Sciences of the United States of America, 102(46), 16569–16572.
  18. Huang, H., Gao, Y., Chen, L., Li, R., Chiew, K., & He, Q. (2013). Browse with a social web directory. In Proceedings of the 36th International ACM SIGIR Conference on Research and Development in Information Retrieval (pp. 865–868). New York: ACM.
  19. Li, R., Bao, S., Yu, Y., Fei, B., & Su, Z. (2007). Towards effective browsing of large scale social annotations. In Proceedings of the 16th International Conference on World Wide Web (pp. 943–952). New York: ACM.
  20. Luo, P., & Chen, C. (2013). Resource organization systems from folksonomy to hierarchical: Constructing the tag tree by exploiting clustering information (in Chinese). Journal of Library and Information Service, 57(22), 120–125.
  21. Markines, B., Cattuto, C., Menczer, F., Benz, D., Hotho, A., & Stumme, G. (2009). Evaluating similarity measures for emergent semantics of social tagging. In Proceedings of the 18th International Conference on World Wide Web (pp. 641–650). New York: ACM.
  22. Rafiei, D., Bharat, K., & Shukla, A. (2010). Diversifying web search results. In Proceedings of the 19th International Conference on World Wide Web (pp. 781–790). New York: ACM.
  23. Rousseau, R., & Zhao, S.X. (2015). A general conceptual framework for characterizing the ego in a network. Journal of Informetrics, 9(1), 145–149.
  24. Si, X., Liu, Z., & Sun, M. (2010). Explore the structure of social tags by subsumption relations. In Proceedings of the 23rd International Conference on Computational Linguistics (pp. 1011–1019). Stroudsburg, PA: Association for Computational Linguistics.
  25. Sinclair, J., & Cardew-Hall, M. (2008). The folksonomy tag cloud: When is it useful? Journal of Information Science, 34(1), 15–29.
  26. Song, Y., Qiu, B., & Farooq, U. (2011). Hierarchical tag visualization and application for tag recommendations. In Proceedings of the 20th ACM International Conference on Information and Knowledge Management (pp. 1331–1340). New York: ACM.
  27. Strohmaier, M., Körner, C., & Kern, R. (2012). Understanding why users tag: A survey of tagging motivation literature and results from an empirical study. Web Semantics: Science, Services and Agents on the World Wide Web, 17, 1–11.
  28. Strohmaier, M., Helic, D., Benz, D., Körner, C., & Kern, R. (2012). Evaluation of folksonomy induction algorithms. ACM Transactions on Intelligent Systems and Technology (TIST), 3(4), Article No. 74.
  29. Suchanek, F.M., Vojnovic, M., & Gunawardena, D. (2008, October). Social tags: Meaning and suggestions. In Proceedings of the 17th ACM Conference on Information and Knowledge Management (pp. 223–232). New York: ACM.
  30. Tsai, F., Cheng, Y., Li, S., & Chen, C. (2009). Heuristic-based approach for constructing hierarchical knowledge structures. In Proceedings of Industrial and Engineering Applications of Artificial Intelligence and Expert Systems (pp. 439–448). Berlin: Springer-Verlag.
  31. Tsui, E., Wang, W.M., Cheung, C.F., & Lau, A.S.M. (2010). A concept-relationship acquisition and inference approach for hierarchical taxonomy construction from tags. Information Processing & Management, 46(1), 44–57.
  32. Verma, C., Mahadevan, V., Rasiwasia, N., Aggarwal, G., Kant, R., Jaimes, A., & Dey, S. (2015). Construction and evaluation of ontological tag trees. Expert Systems with Applications, 42(24), 9587–9602.
  33. Wiesman, F., van den Herik, H.J., & Hasman, A. (2004). Information retrieval by metabrowsing. Journal of the American Society for Information Science and Technology, 55(7), 565–578.
  34. Zhao, S.X., Rousseau, R., & Ye, F.Y. (2011). h-Degree as a basic measure in weighted networks. Journal of Informetrics, 5(4), 668–677.
  35. Zhou, M., Bao, S., Wu, X., & Yu, Y. (2007). An unsupervised model for exploring hierarchical semantics from social annotations. In K. Aberer et al. (Eds.), The Semantic Web: The 6th International Semantic Web Conference, the 2nd Asian Semantic Web Conference, (ISWC 2007 & ASWC 2007), Busan, Korea, November 11–15, 2007 (pp. 680–693). Berlin: Springer- Verlag.
DOI: https://doi.org/10.1515/jdis-2017-0008 | Journal eISSN: 2543-683X | Journal ISSN: 2096-157X
Language: English
Page range: 56 - 75
Submitted on: Nov 29, 2016
Accepted on: Feb 22, 2017
Published on: Mar 21, 2017
Published by: Chinese Academy of Sciences, National Science Library
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2017 Chong Chen, Pengcheng Luo, published by Chinese Academy of Sciences, National Science Library
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.